Difference between revisions of "Exponential integral Ei series"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$\mathrm{Ei}(x) = \gamma + \log...")
 
Line 2: Line 2:
 
<strong>[[Exponential integral Ei series|Theorem]]:</strong> The following formula holds:
 
<strong>[[Exponential integral Ei series|Theorem]]:</strong> The following formula holds:
 
$$\mathrm{Ei}(x) = \gamma + \log x + \displaystyle\sum_{k=1}^{\infty} \dfrac{x^k}{kk!}; x>0,$$
 
$$\mathrm{Ei}(x) = \gamma + \log x + \displaystyle\sum_{k=1}^{\infty} \dfrac{x^k}{kk!}; x>0,$$
where $\mathrm{Ei}$ denotes the [[exponential integral]], $\log$ denotes the [[logarithm]], and $\gamma$ denotes the [[Euler-Mascheroni constant]].
+
where $\mathrm{Ei}$ denotes the [[exponential integral Ei]], $\log$ denotes the [[logarithm]], and $\gamma$ denotes the [[Euler-Mascheroni constant]].
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █  
 
<strong>Proof:</strong> █  
 
</div>
 
</div>
 
</div>
 
</div>

Revision as of 22:08, 16 August 2015

Theorem: The following formula holds: $$\mathrm{Ei}(x) = \gamma + \log x + \displaystyle\sum_{k=1}^{\infty} \dfrac{x^k}{kk!}; x>0,$$ where $\mathrm{Ei}$ denotes the exponential integral Ei, $\log$ denotes the logarithm, and $\gamma$ denotes the Euler-Mascheroni constant.

Proof: