Difference between revisions of "Fibonacci zeta in terms of a sum of binomial coefficients"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds: $$\left(\phi + \dfrac{1}{\phi} \right)F(z)=-\displaystyle\sum_{j=0}^{\infty} (-1)^j {{-z} \choose j} \dfrac{1}{\phi^{z+2j}+1} ,$$ wher...")
 
Line 1: Line 1:
 
==Theorem==
 
==Theorem==
 
The following formula holds:
 
The following formula holds:
$$\left(\phi + \dfrac{1}{\phi} \right)F(z)=-\displaystyle\sum_{j=0}^{\infty} (-1)^j {{-z} \choose j} \dfrac{1}{\phi^{z+2j}+1} ,$$
+
$$(\sqrt{5})^{-z} F(z)=-\displaystyle\sum_{j=0}^{\infty} (-1)^j {{-z} \choose j} \dfrac{1}{\phi^{z+2j}-(-1)^j} ,$$
where $\phi$ denotes the [[golden ratio]], $F(z)$ denotes the [[Fibonacci zeta function]], and ${{-z} \choose j}$ denotes a binomial coefficient.
+
where $F(z)$ denotes the [[Fibonacci zeta function]], ${{-z} \choose j}$ denotes a [[binomial coefficient]], and $\phi$ denotes the [[golden ratio]].
  
 
==Proof==
 
==Proof==
 +
By [[Binet's formula]],
 +
$$F_n=\dfrac{\phi^n - (-\phi)^{-n}}{\sqrt{5}}.$$
 +
Using the [[binomial series]], we see that
 +
$$\dfrac{1}{F_k^z} = \left( \sqrt{5} \right)^z (\phi^k - (-\phi)^{-k})^{-z}=(\sqrt{5})^z \phi^{-zk} \left( 1 - \dfrac{(-\phi)^{-k}}{\phi^k} \right)^{-z}=(\sqrt{5})^z \phi^{-zk} \displaystyle\sum_{j=0}^{\infty} {{-z} \choose j} (-1)^j \left( \dfrac{(-\phi)^{-kj}}{\phi^{kj}} \right).$$
 +
Therefore compute
 +
$$\begin{array}{ll}
 +
(\sqrt{5})^{-z} F(z) &= (\sqrt{5})^{-z} \displaystyle\sum_{k=1}^{\infty} \dfrac{1}{F_k^z} \\
 +
&= (\sqrt{5})^{-z} \displaystyle\sum_{k=1}^{\infty} \displaystyle\sum_{j=0}^{\infty} (\sqrt{5})^z \phi^{-zk} {{-z} \choose j} (-1)^j \left( \dfrac{(-\phi)^{-kj}}{\phi^{kj}} \right) \\
 +
&= \displaystyle\sum_{k=1}^{\infty} \displaystyle\sum_{j=0}^{\infty} \phi^{-zk} {{-z} \choose j} (-1)^j \left( \dfrac{(-\phi)^{-kj}}{\phi^{kj}} \right).
 +
\end{array}$$
 +
Now we interchange the summations (justify this) and apply the [[geometric series]] (justify why it works)  to get
 +
$$\begin{array}{ll}
 +
(\sqrt{5})^{-z} F(z) &= \displaystyle\sum_{j=0}^{\infty} {{-z} \choose j} (-1)^j \displaystyle\sum_{k=1}^{\infty} \phi^{-zk} \left( \dfrac{(-\phi)^{-kj}}{\phi^{kj}} \right) \\
 +
&= \displaystyle\sum_{j=0}^{\infty} {{-z} \choose j} (-1)^j \displaystyle\sum_{k=1}^{\infty} \phi^{-zk} \left( \dfrac{(-\phi)^{-kj}}{\phi^{kj}} \right) \\
 +
&= \displaystyle\sum_{j=0}^{\infty} {{-z} \choose j} (-1)^j \displaystyle\sum_{k=1}^{\infty} \left((-1)^j \phi^{-z-2j} \right)^k \\
 +
&= \displaystyle\sum_{j=0}^{\infty} {{-z} \choose j} (-1)^j \dfrac{(-1)^j \phi^{-z-2j}}{1-(-1)^j \phi^{-z-2j}} \\
 +
&= \displaystyle\sum_{j=0}^{\infty} {{-z} \choose j} \dfrac{1}{\phi^{z+2j}-(-1)^j},
 +
\end{array}$$
 +
as was to be shown.
  
 
==References==
 
==References==
Line 10: Line 29:
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]
 +
[[Category:justify]]

Revision as of 12:16, 11 August 2016

Theorem

The following formula holds: $$(\sqrt{5})^{-z} F(z)=-\displaystyle\sum_{j=0}^{\infty} (-1)^j {{-z} \choose j} \dfrac{1}{\phi^{z+2j}-(-1)^j} ,$$ where $F(z)$ denotes the Fibonacci zeta function, ${{-z} \choose j}$ denotes a binomial coefficient, and $\phi$ denotes the golden ratio.

Proof

By Binet's formula, $$F_n=\dfrac{\phi^n - (-\phi)^{-n}}{\sqrt{5}}.$$ Using the binomial series, we see that $$\dfrac{1}{F_k^z} = \left( \sqrt{5} \right)^z (\phi^k - (-\phi)^{-k})^{-z}=(\sqrt{5})^z \phi^{-zk} \left( 1 - \dfrac{(-\phi)^{-k}}{\phi^k} \right)^{-z}=(\sqrt{5})^z \phi^{-zk} \displaystyle\sum_{j=0}^{\infty} {{-z} \choose j} (-1)^j \left( \dfrac{(-\phi)^{-kj}}{\phi^{kj}} \right).$$ Therefore compute $$\begin{array}{ll} (\sqrt{5})^{-z} F(z) &= (\sqrt{5})^{-z} \displaystyle\sum_{k=1}^{\infty} \dfrac{1}{F_k^z} \\ &= (\sqrt{5})^{-z} \displaystyle\sum_{k=1}^{\infty} \displaystyle\sum_{j=0}^{\infty} (\sqrt{5})^z \phi^{-zk} {{-z} \choose j} (-1)^j \left( \dfrac{(-\phi)^{-kj}}{\phi^{kj}} \right) \\ &= \displaystyle\sum_{k=1}^{\infty} \displaystyle\sum_{j=0}^{\infty} \phi^{-zk} {{-z} \choose j} (-1)^j \left( \dfrac{(-\phi)^{-kj}}{\phi^{kj}} \right). \end{array}$$ Now we interchange the summations (justify this) and apply the geometric series (justify why it works) to get $$\begin{array}{ll} (\sqrt{5})^{-z} F(z) &= \displaystyle\sum_{j=0}^{\infty} {{-z} \choose j} (-1)^j \displaystyle\sum_{k=1}^{\infty} \phi^{-zk} \left( \dfrac{(-\phi)^{-kj}}{\phi^{kj}} \right) \\ &= \displaystyle\sum_{j=0}^{\infty} {{-z} \choose j} (-1)^j \displaystyle\sum_{k=1}^{\infty} \phi^{-zk} \left( \dfrac{(-\phi)^{-kj}}{\phi^{kj}} \right) \\ &= \displaystyle\sum_{j=0}^{\infty} {{-z} \choose j} (-1)^j \displaystyle\sum_{k=1}^{\infty} \left((-1)^j \phi^{-z-2j} \right)^k \\ &= \displaystyle\sum_{j=0}^{\infty} {{-z} \choose j} (-1)^j \dfrac{(-1)^j \phi^{-z-2j}}{1-(-1)^j \phi^{-z-2j}} \\ &= \displaystyle\sum_{j=0}^{\infty} {{-z} \choose j} \dfrac{1}{\phi^{z+2j}-(-1)^j}, \end{array}$$ as was to be shown.

References