Difference between revisions of "Gamma"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The gamma function is the function defined by the integral (initially for positive values of $x$) $$\Gamma(x)=\displaystyle\int_0^{\infty} x^{t-1}e^{-x} dx.$$")
 
Line 1: Line 1:
 
The gamma function is the function defined by the integral (initially for positive values of $x$)
 
The gamma function is the function defined by the integral (initially for positive values of $x$)
 
$$\Gamma(x)=\displaystyle\int_0^{\infty} x^{t-1}e^{-x} dx.$$
 
$$\Gamma(x)=\displaystyle\int_0^{\infty} x^{t-1}e^{-x} dx.$$
 +
 +
=Properties=
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 +
<strong>Theorem:</strong> $\Gamma(x+1)=x\Gamma(x); x>0$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> proof goes here █
 +
</div>
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 +
<strong>Theorem:</strong> If $x \in \mathbb{N}$, then $\Gamma(x+1)=x!$.
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> proof goes here █
 +
</div>
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 +
<strong>Theorem (Legendre Duplication Formula):</strong> 
 +
$$\Gamma(2x)=\dfrac{2^{2x-1}}{\sqrt{\pi}} \Gamma(x)\Gamma \left( x +\dfrac{1}{2} \right).$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> proof goes here █
 +
</div>
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 +
<strong>Proposition:</strong>  If $z=0,-1,-2,\ldots$ then $\Gamma(z)=\infty$.
 +
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> proof goes here █
 +
</div>
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 +
<strong>Theorem:</strong> The following relationship between $\Gamma$ and the [[Sine | $\sin$]] function holds:
 +
$$\Gamma(x)\Gamma(1-x) = \dfrac{\pi}{\sin(\pi x)}.$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> proof goes here █
 +
</div>
 +
</div>

Revision as of 05:15, 27 July 2014

The gamma function is the function defined by the integral (initially for positive values of $x$) $$\Gamma(x)=\displaystyle\int_0^{\infty} x^{t-1}e^{-x} dx.$$

Properties

Theorem: $\Gamma(x+1)=x\Gamma(x); x>0$

Proof: proof goes here █

Theorem: If $x \in \mathbb{N}$, then $\Gamma(x+1)=x!$.

Proof: proof goes here █

Theorem (Legendre Duplication Formula): $$\Gamma(2x)=\dfrac{2^{2x-1}}{\sqrt{\pi}} \Gamma(x)\Gamma \left( x +\dfrac{1}{2} \right).$$

Proof: proof goes here █

Proposition: If $z=0,-1,-2,\ldots$ then $\Gamma(z)=\infty$.

Proof: proof goes here █

Theorem: The following relationship between $\Gamma$ and the $\sin$ function holds: $$\Gamma(x)\Gamma(1-x) = \dfrac{\pi}{\sin(\pi x)}.$$

Proof: proof goes here █