Difference between revisions of "Gamma(z+1)=zGamma(z)"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> <strong>Theorem:</strong> $$\Gamma(x+1)=x\Gamma(x), \quad x>0,$$ wher...")
 
Line 6: Line 6:
 
<strong>Proof:</strong> Use [[integration by parts]] to compute
 
<strong>Proof:</strong> Use [[integration by parts]] to compute
 
$$\begin{array}{ll}
 
$$\begin{array}{ll}
\Gamma(x+1) &= \displaystyle\int_0^{\infty} \xi^x e^{-\xi} d\xi \\
+
\Gamma(x+1) &= \displaystyle\int_0^{\infty} \xi^x e^{-\xi} \mathrm{d}\xi \\
&= -\xi^x e^{-\xi}|_0^{\infty} \displaystyle\int_0^{\infty} x \xi^{x-1} e^{-\xi} d\xi \\
+
&= -\xi^x e^{-\xi}|_0^{\infty} \displaystyle\int_0^{\infty} x \xi^{x-1} e^{-\xi} \mathrm{d}\xi \\
 
&= x\Gamma(x),
 
&= x\Gamma(x),
 
\end{array}$$
 
\end{array}$$

Revision as of 05:44, 16 May 2016

Theorem: $$\Gamma(x+1)=x\Gamma(x), \quad x>0,$$ where $\Gamma$ denotes the gamma function.

Proof: Use integration by parts to compute $$\begin{array}{ll} \Gamma(x+1) &= \displaystyle\int_0^{\infty} \xi^x e^{-\xi} \mathrm{d}\xi \\ &= -\xi^x e^{-\xi}|_0^{\infty} \displaystyle\int_0^{\infty} x \xi^{x-1} e^{-\xi} \mathrm{d}\xi \\ &= x\Gamma(x), \end{array}$$ as was to be shown. █