Difference between revisions of "Glaisher–Kinkelin constant"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The Glaisher–Kinkelin constant is defined by the formula $$A=\displaystyle\lim_{n \rightarrow \infty} \dfrac{(2\pi)^{\frac{n}{2}}n^{\frac{n^2}{2}-\frac{1}{12}}e^{-\frac{3n^2...")
 
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
The Glaisher–Kinkelin constant is defined by the formula
 
The Glaisher–Kinkelin constant is defined by the formula
$$A=\displaystyle\lim_{n \rightarrow \infty} \dfrac{(2\pi)^{\frac{n}{2}}n^{\frac{n^2}{2}-\frac{1}{12}}e^{-\frac{3n^2}{4}+\frac{1}{12}}}{G(n+1)}.$$
+
$$A=\displaystyle\lim_{n \rightarrow \infty} \dfrac{(2\pi)^{\frac{n}{2}}n^{\frac{n^2}{2}-\frac{1}{12}}e^{-\frac{3n^2}{4}+\frac{1}{12}}}{G(n+1)},$$
 +
where $G$ is the [[Barnes G|Barnes $G$]] function.
  
 
=Properties=
 
=Properties=
{{:Derivative of zeta at -1}}
+
[[Derivative of zeta at -1]]<br />
 +
 
 +
[[Category:SpecialFunction]]

Latest revision as of 16:01, 16 June 2016

The Glaisher–Kinkelin constant is defined by the formula $$A=\displaystyle\lim_{n \rightarrow \infty} \dfrac{(2\pi)^{\frac{n}{2}}n^{\frac{n^2}{2}-\frac{1}{12}}e^{-\frac{3n^2}{4}+\frac{1}{12}}}{G(n+1)},$$ where $G$ is the Barnes $G$ function.

Properties

Derivative of zeta at -1