Difference between revisions of "Hermite (probabilist)"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 +
The Hermite polynomials $\{H_n\}_{n=0}^{\infty}$ are a sequence of [[Orthogonal polynomial|orthogonal polynomials]] that satisfy the differential equation
 +
$$\left\{ \begin{array}{ll}
 +
 +
\end{array} \right.$$
 +
 +
=Properties=
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<strong>Theorem:</strong> The Hermite polynomials $H_n$ satisfy the [[Rodrigues' formula]]
 
<strong>Theorem:</strong> The Hermite polynomials $H_n$ satisfy the [[Rodrigues' formula]]

Revision as of 03:49, 14 September 2014

The Hermite polynomials $\{H_n\}_{n=0}^{\infty}$ are a sequence of orthogonal polynomials that satisfy the differential equation $$\left\{ \begin{array}{ll}

\end{array} \right.$$

Properties

Theorem: The Hermite polynomials $H_n$ satisfy the Rodrigues' formula $$H_n(t) = (-1)^ne^{x^2}\dfrac{d^n}{dx^n}e^{-x^2}.$$

Proof:

Theorem: (Generating function) The Hermite polynomials obey $$e^{2tx-t^2} = \displaystyle\sum_{k=0}^{\infty} \dfrac{H_k(x)t^n}{n!}.$$

Proof:

Theorem: (Orthogonality) The Hermite polynomials obey $$\displaystyle\int_{-\infty}^{\infty} e^{-x^2}H_n(x)H_m(x)dx=\left\{ \begin{array}{ll} 0 &; m \neq n \\ 2^nn!\sqrt{\pi} &; m=n \end{array} \right..$$

Proof:

Theorem: $H_n(x)$ is an even function for even $n$ and an odd function for odd $n$.

Proof: