Difference between revisions of "Hurwitz zeta"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
The Hurwitz zeta function is defined for $\mathrm{Re}(s)>1$,
+
The Hurwitz zeta function is defined for $\mathrm{Re}(s)>1$ and $\mathrm{Re}(a)>0$ by
 
$$\zeta(s,a)= \displaystyle\sum_{n=0}^{\infty} \dfrac{1}{(n+a)^s}.$$
 
$$\zeta(s,a)= \displaystyle\sum_{n=0}^{\infty} \dfrac{1}{(n+a)^s}.$$
  
 
=Properties=
 
=Properties=
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 +
<strong>Theorem:</strong> The function $\zeta(s,a)$ is [[absolutely convergent]] for all $s$ with $\mathrm{Re}(s)>1$ and $a$ with $\mathrm{Re}(a)>0$..
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 
{{:Bernoulli polynomial and Hurwitz zeta}}
 
{{:Bernoulli polynomial and Hurwitz zeta}}
 
{{:Catalan's constant using Hurwitz zeta}}
 
{{:Catalan's constant using Hurwitz zeta}}

Revision as of 04:29, 12 April 2015

The Hurwitz zeta function is defined for $\mathrm{Re}(s)>1$ and $\mathrm{Re}(a)>0$ by $$\zeta(s,a)= \displaystyle\sum_{n=0}^{\infty} \dfrac{1}{(n+a)^s}.$$

Properties

Theorem: The function $\zeta(s,a)$ is absolutely convergent for all $s$ with $\mathrm{Re}(s)>1$ and $a$ with $\mathrm{Re}(a)>0$..

Proof:

Theorem

The following formula holds: $$B_n(x)=-n \zeta(1-n,x),$$ where $B_n$ denotes the Bernoulli polynomial and $\zeta$ denotes the Hurwitz zeta function.

Proof

References

Theorem

The following formula holds: $$K=\dfrac{\pi}{24} -\dfrac{\pi}{2}\log(A)+4\pi \zeta' \left(-1 , \dfrac{1}{4} \right),$$ where $K$ is Catalan's constant, $A$ is the Glaisher–Kinkelin constant, and $\zeta'$ denotes the partial derivative of the Hurwitz zeta function with respect to the first argument.

Proof

References