Difference between revisions of "Hurwitz zeta"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
Line 5: Line 5:
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<strong>Theorem:</strong> The function $\zeta(s,a)$ is [[absolutely convergent]] for all $s$ with $\mathrm{Re}(s)>1$ and $a$ with $\mathrm{Re}(a)>0$..
 
<strong>Theorem:</strong> The function $\zeta(s,a)$ is [[absolutely convergent]] for all $s$ with $\mathrm{Re}(s)>1$ and $a$ with $\mathrm{Re}(a)>0$..
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> The function $\zeta(s,a)$ is [[analytic]] for all $s$ except for a simple pole at $s=1$ with [[residue]] $1$.
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █  
 
<strong>Proof:</strong> █  

Revision as of 04:05, 30 April 2015

The Hurwitz zeta function is defined for $\mathrm{Re}(s)>1$ and $\mathrm{Re}(a)>0$ by $$\zeta(s,a)= \displaystyle\sum_{n=0}^{\infty} \dfrac{1}{(n+a)^s}.$$

Properties

Theorem: The function $\zeta(s,a)$ is absolutely convergent for all $s$ with $\mathrm{Re}(s)>1$ and $a$ with $\mathrm{Re}(a)>0$..

Proof:

Theorem: The function $\zeta(s,a)$ is analytic for all $s$ except for a simple pole at $s=1$ with residue $1$.

Proof:

Theorem

The following formula holds: $$\Gamma(s)\zeta(s,a) = \displaystyle\int_0^{\infty} \dfrac{x^{s-1}e^{-ax}}{1-e^{-x}} \mathrm{d}x,$$ where $\Gamma$ denotes the gamma function and $\zeta$ denotes the Hurwitz zeta function.

Proof

References

Theorem

The following formula holds: $$B_n(x)=-n \zeta(1-n,x),$$ where $B_n$ denotes the Bernoulli polynomial and $\zeta$ denotes the Hurwitz zeta function.

Proof

References

Theorem

The following formula holds: $$K=\dfrac{\pi}{24} -\dfrac{\pi}{2}\log(A)+4\pi \zeta' \left(-1 , \dfrac{1}{4} \right),$$ where $K$ is Catalan's constant, $A$ is the Glaisher–Kinkelin constant, and $\zeta'$ denotes the partial derivative of the Hurwitz zeta function with respect to the first argument.

Proof

References