Difference between revisions of "Hypergeometric pFq"

From specialfunctionswiki
Jump to: navigation, search
Line 8: Line 8:
  
 
=Properties=
 
=Properties=
[[Convergence of Hypergeometric pFq]]
+
[[Convergence of Hypergeometric pFq]]<br />
[[Derivatives of Hypergeometric pFq]]
+
[[Derivatives of Hypergeometric pFq]]<br />
 
+
[[Differential equation for Hypergeometric pFq]]<br />
=Differential equation=
 
Define the derivative operator $\vartheta=t \dfrac{d}{dt}$.Then
 
$$\vartheta t^k = t \dfrac{d}{dt} t^k = t(kt^{k-1})=kt^k.$$
 
 
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<strong>Proposition:</strong> The operator $\vartheta$ is a [[Linear_operator | linear operator]]. <br />
 
<div class="mw-collapsible-content">
 
<strong>Proof: █</strong>
 
</div></div>
 
<br />
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<strong>Theorem:</strong> Define $y(t)={}_pF_q(\vec{a};\vec{b};t)$. Then $y$ satisfies
 
$$(\dagger) \hspace{35pt} \left[ \vartheta \displaystyle\prod_{j=1}^q (\vartheta + b_j-1) - t \displaystyle\prod_{i=1}^p (\vartheta+a_i) \right]y=0.$$
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong>
 
First compute
 
$$\begin{array}{ll}
 
\left[ t \displaystyle\prod_{i=1}^p (\vartheta+a_i) \right] y(t) &= \left[ t \displaystyle\prod_{i=1}^p (\vartheta + a_i) \right] \displaystyle\sum_{k=0}^{\infty} \dfrac{\vec{a}^{\overline{k}}}{\vec{b}^{\overline{k}}} \dfrac{t^k}{k!} \\
 
&= t\displaystyle\sum_{k=0}^{\infty} \dfrac{\vec{a}^{\overline{k}}}{\vec{b}^{\overline{k}}} \left[ \displaystyle\prod_{i=1}^p (\vartheta + a_i) \right] \dfrac{t^k}{k!} \\
 
&= t\displaystyle\sum_{k=0}^{\infty} \dfrac{\vec{a}^{\overline{k}}}{\vec{b}^{\overline{k}}k!} \left[ \displaystyle\prod_{i=1}^p (\vartheta + a_i) \right] t^k \\
 
&= t\displaystyle\sum_{k=0}^{\infty} \dfrac{\vec{a}^{\overline{k}}}{\vec{b}^{\overline{k}}} \left[ \displaystyle\prod_{i=1}^p (k+a_i) \right] \dfrac{t^k}{k!} \\
 
&=t\displaystyle\sum_{k=0}^{\infty} \dfrac{(\vec{a}+k)\vec{a}^{\overline{k}}}{\vec{b}^{\overline{k}}} \dfrac{t^k}{k!}. \\
 
\end{array}$$
 
Now the computation
 
$$\begin{array}{ll}
 
\left[ \vartheta \displaystyle\prod_{j=1}^q (\vartheta + b_j -1) \right]y(t) &= \left[ \vartheta \displaystyle\prod_{j=1}^q (\vartheta+b_j-1)  \right]\displaystyle\sum_{k=0}^{\infty} \dfrac{\vec{a}^{\overline{k}}}{\vec{b}^{\overline{k}}} \dfrac{t^k}{k!} \\
 
&=\displaystyle\sum_{k=0}^{\infty} \dfrac{\vec{a}^{\overline{k}}}{\vec{b}^{\overline{k}}k!} \left[ \vartheta \displaystyle\prod_{j=1}^q (\vartheta + b_j -1) \right] t^k \\
 
&= \displaystyle\sum_{k=1}^{\infty} \dfrac{\vec{a}^{\overline{k}}}{k!} \left[ \dfrac{\displaystyle\prod_{j=1}^q (k + b_j -1)}{b^{\overline{k}}} \right] \vartheta t_k \\
 
&= \displaystyle\sum_{k=1}^{\infty} \dfrac{\vec{a}^{\overline{k}}}{k!} \left[ k\displaystyle\prod_{j=1}^q \dfrac{k+b_j-1}{b_j(b_j+1)\ldots(b_j+k-1)} \right] t^k \\
 
&= \displaystyle\sum_{k=1}^{\infty} \dfrac{\vec{a}^{\overline{k}}}{k!} \left[ \displaystyle\prod_{j=1}^q \dfrac{1}{b_j(b_j+1)\ldots(b_j+k-2)} \right] t^k \\
 
&= \displaystyle\sum_{k=1}^{\infty} \dfrac{\vec{a}^{\overline{k}}}{\vec{b}^{\overline{k-1}}(k-1)!} t^k \\
 
&= \displaystyle\sum_{k=0}^{\infty} \dfrac{\vec{a}^{\overline{k+1}}}{\vec{b}^{\overline{k}}k!}t^{k+1} \\
 
&= \displaystyle\sum_{k=0}^{\infty} \dfrac{(\vec{a}+k)\vec{a}^{\overline{k}}}{\vec{b}^{\overline{k}}} \dfrac{t^{k+1}}{k!} \\
 
&= t\displaystyle\sum_{k=0}^{\infty} \dfrac{(\vec{a}+k)\vec{a}^{\overline{k}}}{\vec{b}^{\overline{k}}} \dfrac{t^k}{k!} \\
 
&= \left[ t \displaystyle\prod_{i=1}^p (\vartheta + a_i) \right] y(t)
 
\end{array}$$
 
proves the claim. █
 
</div></div>
 
  
 
=Examples=
 
=Examples=

Revision as of 21:30, 26 June 2016

Let $p,q \in \{0,1,2,\ldots\}$ and $a_j,b_{\ell} \in \mathbb{R}$ for $j=1,\ldots,p$ and $\ell=1,\ldots,q$. We will use the notation $\vec{a}=\displaystyle\prod_{j=1}^p a_j$ and $\vec{b}=\displaystyle\prod_{\ell=1}^q b_{\ell}$ and we define the notations $$\vec{a}^{\overline{k}} = \displaystyle\prod_{j=1}^p a_j^{\overline{k}},$$ and $$\vec{a}+k = \displaystyle\prod_{j=1}^p (a_j+k),$$ (and similar for $\vec{b}^{\overline{k}}$). Define the generalized hypergeometric function $${}_pF_q(a_1,a_2,\ldots,a_p;b_1,\ldots,b_q;t)={}_pF_q(\vec{a};\vec{b};t)=\displaystyle\sum_{k=0}^{\infty}\dfrac{\displaystyle\prod_{j=1}^p a_j^{\overline{k}}}{\displaystyle\prod_{\ell=1}^q b_{\ell}^{\overline{k}}} \dfrac{t^k}{k!}.$$

Properties

Convergence of Hypergeometric pFq
Derivatives of Hypergeometric pFq
Differential equation for Hypergeometric pFq

Examples

${}_0F_0$

Exponential in terms of hypergeometric 0F0

${}_0F_1$

Relationship between cosine and hypergeometric 0F1
Relationship between sine and hypergeometric 0F1
Relationship between cosh and hypergeometric 0F1
Relationship between sinh and hypergeometric 0F1
Relationship between Bessel J sub nu and hypergeometric 0F1

${}_1F_0$

${}_1F_1$

${}_1F_2$

Relationship between Struve function and hypergeometric pFq

${}_2F_0$

Bessel polynomial generalized hypergeometric

${}_2F_1$

z2F1(1,1;2,-z) equals log(1+z)
Relationship between arcsin and hypergeometric 2F1
Relationship between arctan and hypergeometric 2F1
Relationship between Chebyshev T and hypergeometric 2F1
Relationship between Chebyshev U and hypergeometric 2F1
Relationship between Legendre polynomial and hypergeometric 2F1
Relationship between incomplete beta and hypergeometric 2F1

Videos

Special functions - Hypergeometric series

References

Notes on hypergeometric functions
Rainville's Special Functions
Abramowitz and Stegun
Note on a hypergeometric series - Cayley