Difference between revisions of "Hypergeometric pFq"

From specialfunctionswiki
Jump to: navigation, search
(External links)
Line 37: Line 37:
  
 
=References=
 
=References=
* {{BookReference|Higher Transcendental Functions Volume I|1953|Harry Bateman|prev=findme|next=finme}}: $4.1 (1)$ (note: typo in the text, the sum there starts at $1$ but should start at $0$)
+
* {{BookReference|Higher Transcendental Functions Volume I|1953|Harry Bateman|prev=findme|next=Pochhammer}}: $4.1 (1)$ (note: typo in the text, the sum there starts at $1$ but should start at $0$)
  
 
{{:Hypergeometric functions footer}}
 
{{:Hypergeometric functions footer}}
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Revision as of 19:11, 17 June 2017

Let $p,q \in \{0,1,2,\ldots\}$ and $a_j,b_{\ell} \in \mathbb{R}$ for $j=1,\ldots,p$ and $\ell=1,\ldots,q$. We will use the notation $\vec{a}=\displaystyle\prod_{j=1}^p a_j$ and $\vec{b}=\displaystyle\prod_{\ell=1}^q b_{\ell}$ and we define the notations $$\vec{a}^{\overline{k}} = \displaystyle\prod_{j=1}^p a_j^{\overline{k}},$$ and $$\vec{a}+k = \displaystyle\prod_{j=1}^p (a_j+k),$$ (and similar for $\vec{b}^{\overline{k}}$). Define the generalized hypergeometric function $${}_pF_q(a_1,a_2,\ldots,a_p;b_1,\ldots,b_q;t)={}_pF_q(\vec{a};\vec{b};t)=\displaystyle\sum_{k=0}^{\infty}\dfrac{\displaystyle\prod_{j=1}^p a_j^{\overline{k}}}{\displaystyle\prod_{\ell=1}^q b_{\ell}^{\overline{k}}} \dfrac{t^k}{k!}.$$

Properties

Convergence of Hypergeometric pFq
Hypergeometric pFq terminates to a polynomial if an a_j is a nonpositive integer
Hypergeometric pFq diverges if a b_j is a nonpositive integer
Hypergeometric pFq converges for all z if p less than q+1
Hypergeometric pFq converges in the unit disk if p=q+1
Hypergeometric pFq diverges if p greater than q+1

Derivatives of Hypergeometric pFq
Differential equation for Hypergeometric pFq

Particular hypergeometric functions

Hypergeometric 0F0
Hypergeometric 1F0
Hypergeometric 0F1
Hypergeometric 1F1
Hypergeometric 2F1
Hypergeometric 1F2
Hypergeometric 2F0
Hypergeometric 2F1

Videos

Special functions - Hypergeometric series (9 March 2011)

External links

Notes on hypergeometric functions
Note on a hypergeometric series - Cayley

References

Hypergeometric functions
Hypergeometricthumb.png
Hypergeometric ${}_pF_q$