Difference between revisions of "Hypergeometric pFq"

From specialfunctionswiki
Jump to: navigation, search
 
(9 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
__NOTOC__
 
__NOTOC__
Let $p,q \in \{0,1,2,\ldots\}$ and $a_j,b_{\ell} \in \mathbb{R}$ for $j=1,\ldots,p$ and $\ell=1,\ldots,q$. We will use the notation $\vec{a}=\displaystyle\prod_{j=1}^p a_j$ and $\vec{b}=\displaystyle\prod_{\ell=1}^q b_{\ell}$ and we define the notations
+
The generalized hypergeometric function ${}_pF_q$ is defined by
$$\vec{a}^{\overline{k}} = \displaystyle\prod_{j=1}^p a_j^{\overline{k}},$$
+
$${}_pF_q(a_1,\ldots,a_p;b_1,\ldots,b_q;z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{(a_1)_k(a_2)_k\ldots(a_p)_k}{(b_1)_k(b_2)_k\ldots(b_q)_k} \dfrac{z^k}{k!},$$
and
+
where $(a_1)_k$ denotes the [[Pochhammer]] symbol.
$$\vec{a}+k = \displaystyle\prod_{j=1}^p (a_j+k),$$
 
(and similar for $\vec{b}^{\overline{k}}$).
 
Define the generalized hypergeometric function
 
$${}_pF_q(a_1,a_2,\ldots,a_p;b_1,\ldots,b_q;t)={}_pF_q(\vec{a};\vec{b};t)=\displaystyle\sum_{k=0}^{\infty}\dfrac{\displaystyle\prod_{j=1}^p a_j^{\overline{k}}}{\displaystyle\prod_{\ell=1}^q b_{\ell}^{\overline{k}}} \dfrac{t^k}{k!}.$$
 
  
 
=Properties=
 
=Properties=
Line 18: Line 14:
 
[[Derivatives of Hypergeometric pFq]]<br />
 
[[Derivatives of Hypergeometric pFq]]<br />
 
[[Differential equation for Hypergeometric pFq]]<br />
 
[[Differential equation for Hypergeometric pFq]]<br />
 
=Particular hypergeometric functions=
 
[[Hypergeometric 0F0]]<br />
 
[[Hypergeometric 1F0]]<br />
 
[[Hypergeometric 0F1]]<br />
 
[[Hypergeometric 1F1]]<br />
 
[[Hypergeometric 2F1]]<br />
 
[[Hypergeometric 1F2]]<br />
 
[[Hypergeometric 2F0]]<br />
 
[[Hypergeometric 2F1]]<br />
 
  
 
=Videos=
 
=Videos=
Line 34: Line 20:
 
=External links=
 
=External links=
 
[http://www.johndcook.com/HypergeometricFunctions.pdf Notes on hypergeometric functions]<br />
 
[http://www.johndcook.com/HypergeometricFunctions.pdf Notes on hypergeometric functions]<br />
Rainville's Special Functions<br />
 
[http://dualaud.net/specialfunctionswiki/abramowitz_and_stegun-1.03/page_555.htm Abramowitz and Stegun]<br />
 
 
[http://gdz.sub.uni-goettingen.de/dms/load/img/?PID=PPN600494829_0016%7CLOG_0038 Note on a hypergeometric series - Cayley]<br />
 
[http://gdz.sub.uni-goettingen.de/dms/load/img/?PID=PPN600494829_0016%7CLOG_0038 Note on a hypergeometric series - Cayley]<br />
  
 
=References=
 
=References=
* {{BookReference|Higher Transcendental Functions Volume I|1953|Harry Bateman|prev=findme|next=finme}}: $4.1 (1)$ (note: typo in the text, the sum there starts at $1$ but should start at $0$)
+
* {{BookReference|Higher Transcendental Functions Volume I|1953|Arthur Erdélyi|author2=Wilhelm Magnus|author3=Fritz Oberhettinger|author4=Francesco G. Tricomi|prev=findme|next=Pochhammer}}: $4.1 (1)$ (note: typo in the text, the sum there starts at $1$ but should start at $0$)
 +
* {{BookReference|Higher Transcendental Functions Volume I|1953|Arthur Erdélyi|author2=Wilhelm Magnus|author3=Fritz Oberhettinger|author4=Francesco G. Tricomi|prev=findme|next=Pochhammer}}: $5.1 (2)$
 +
* {{BookReference|Special Functions of Mathematical Physics and Chemistry|1956|Ian N. Sneddon|prev=findme|next=findme}}: $\S 12 (12.4)$
 +
* {{BookReference|Special Functions for Scientists and Engineers|1968|W.W. Bell|prev=findme|next=findme}}: $(9.1)$
  
 
{{:Hypergeometric functions footer}}
 
{{:Hypergeometric functions footer}}
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Latest revision as of 14:42, 15 March 2018

The generalized hypergeometric function ${}_pF_q$ is defined by $${}_pF_q(a_1,\ldots,a_p;b_1,\ldots,b_q;z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{(a_1)_k(a_2)_k\ldots(a_p)_k}{(b_1)_k(b_2)_k\ldots(b_q)_k} \dfrac{z^k}{k!},$$ where $(a_1)_k$ denotes the Pochhammer symbol.

Properties

Convergence of Hypergeometric pFq
Hypergeometric pFq terminates to a polynomial if an a_j is a nonpositive integer
Hypergeometric pFq diverges if a b_j is a nonpositive integer
Hypergeometric pFq converges for all z if p less than q+1
Hypergeometric pFq converges in the unit disk if p=q+1
Hypergeometric pFq diverges if p greater than q+1

Derivatives of Hypergeometric pFq
Differential equation for Hypergeometric pFq

Videos

Special functions - Hypergeometric series (9 March 2011)

External links

Notes on hypergeometric functions
Note on a hypergeometric series - Cayley

References

Hypergeometric functions
Hypergeometricthumb.png
Hypergeometric ${}_pF_q$