Difference between revisions of "Integral of (1+t)^(2x-1)(1-t)^(2y-1)(1+t^2)^(-x-y)dt=2^(x+y-2)B(x,y)"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds for $\mathrm{Re}(x)>0$ and $\mathrm{Re}(y)>0$: $$\displaystyle\int_{-1}^1 (1+t)^{2x-1}(1-t)^{2y-1}(1+t^2)^{-x-y} \mathrm{d}t= 2^{x+y-2}...")
 
 
Line 7: Line 7:
  
 
==References==
 
==References==
* {{BookReference|Higher Transcendental Functions Volume I|1953|Harry Bateman|prev=Integral of t^(x-1)(1-t^z)^(y-1) dt=(1/z)B(x/z,y)|next=Beta in terms of sine and cosine}}: $\S 1.5 (18)$
+
* {{BookReference|Higher Transcendental Functions Volume I|1953|Arthur Erdélyi|author2=Wilhelm Magnus|author3=Fritz Oberhettinger|author4=Francesco G. Tricomi|prev=Integral of t^(x-1)(1-t^z)^(y-1) dt=(1/z)B(x/z,y)|next=Beta in terms of sine and cosine}}: $\S 1.5 (18)$
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 21:04, 3 March 2018

Theorem

The following formula holds for $\mathrm{Re}(x)>0$ and $\mathrm{Re}(y)>0$: $$\displaystyle\int_{-1}^1 (1+t)^{2x-1}(1-t)^{2y-1}(1+t^2)^{-x-y} \mathrm{d}t= 2^{x+y-2}B(x,y),$$ where $B$ denotes the beta function.

Proof

References