Difference between revisions of "Integral of (t-b)^(x-1)(a-t)^(y-1)/(c-t)^(x+y) dt = (a-b)^(x+y-1)/((c-a)^x (c-b)^y) B(x,y)"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds for $\mathrm{Re}(x)>0$, $\mathrm{Re}(y)>0$, and $b<a<c$: $$\displaystyle\int_a^b \dfrac{(t-b)^{x-1}(a-t)^{y-1}}{(c-t)^{x+y}} \mathrm{d}...")
 
Line 7: Line 7:
  
 
==References==
 
==References==
* {{BookReference|Higher Transcendental Functions Volume I|1953|Harry Bateman|prev=Integral of (t-b)^(x-1)(a-t)^(y-1)/(t-x)^(x+y) dt=(a-b)^(x+y-1)/((a-c)^x(b-c)^y) B(x,y)|next=integral of (1+bt^x)^(-y)t^x dt = (1/z)*b^(-(x+1)/z) B((x+1)/z,y-(x+1)/z)}}: $\S 1.5 (15)$
+
* {{BookReference|Higher Transcendental Functions Volume I|1953|Harry Bateman|prev=Integral of (t-b)^(x-1)(a-t)^(y-1)/(t-x)^(x+y) dt=(a-b)^(x+y-1)/((a-c)^x(b-c)^y) B(x,y)|next=integral of (1+bt^z)^(-y)t^x dt = (1/z)*b^(-(x+1)/z) B((x+1)/z,y-(x+1)/z)}}: $\S 1.5 (15)$
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Revision as of 23:22, 24 June 2017

Theorem

The following formula holds for $\mathrm{Re}(x)>0$, $\mathrm{Re}(y)>0$, and $b<a<c$: $$\displaystyle\int_a^b \dfrac{(t-b)^{x-1}(a-t)^{y-1}}{(c-t)^{x+y}} \mathrm{d}t = \dfrac{(a-b)^{x+y-1}}{(c-a)^x (c-b)^y} B(x,y),$$ where $B$ denotes the beta function.

Proof

References