Difference between revisions of "Integral of (t-b)^(x-1)(a-t)^(y-1)/(t-x)^(x+y) dt=(a-b)^(x+y-1)/((a-c)^x(b-c)^y) B(x,y)"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds for $\mathrm{Re}(x)>0$, $\mathrm{Re}(y) > 0$, and $c<b<a$: $$\displaystyle\int_a^b \dfrac{(t-b)^{x-1}(a-t)^{y-1}}{(t-c)^{x+y}} \mathrm{...")
 
Line 7: Line 7:
  
 
==References==
 
==References==
* {{BookReference|Higher Transcendental Functions Volume I|1953|Harry Bateman|prev=Integral (t-b)^(x-1)(a-t)^(y-1)dt=(a-b)^(x+y-1)B(x,y)|next=findme}}: $\S 1.5 (14)$
+
* {{BookReference|Higher Transcendental Functions Volume I|1953|Harry Bateman|prev=Integral (t-b)^(x-1)(a-t)^(y-1)dt=(a-b)^(x+y-1)B(x,y)|next=integral of (t-b)^(x-1)(a-t)^(y-1)/(c-t)^(x+y) dt = (a-b)^(x+y-1)/((c-a)^x (c-b)^y) B(x,y)}}: $\S 1.5 (14)$
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Revision as of 23:18, 24 June 2017

Theorem

The following formula holds for $\mathrm{Re}(x)>0$, $\mathrm{Re}(y) > 0$, and $c<b<a$: $$\displaystyle\int_a^b \dfrac{(t-b)^{x-1}(a-t)^{y-1}}{(t-c)^{x+y}} \mathrm{d}t=\dfrac{(a-b)^{x+y-1}}{(a-c)^x (b-c)^y} B(x,y),$$ where $B$ denotes the beta function.

Proof

References