Difference between revisions of "Integral of Bessel J for Re(nu) greater than -1"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds for $\mathrm{Re}(\nu)>-1$: $$\displaystyle\int_0^z J_{\nu}(t) \mathrm{d}t = 2 \displaystyle\sum_{k=0}^{\infty} J_{\nu+2k+1}(z),$$ where...")
 
 
Line 7: Line 7:
  
 
==References==
 
==References==
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Integral of monomial times Bessel J|next=}}: $11.1.2$
+
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Integral of monomial times Bessel J|next=Integral of Bessel J for nu=2n}}: $11.1.2$
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 16:56, 27 June 2016

Theorem

The following formula holds for $\mathrm{Re}(\nu)>-1$: $$\displaystyle\int_0^z J_{\nu}(t) \mathrm{d}t = 2 \displaystyle\sum_{k=0}^{\infty} J_{\nu+2k+1}(z),$$ where $J_{\nu}$ denotes the Bessel function of the first kind.

Proof

References