Difference between revisions of "Integral of log of inverse erf from 0 to 1"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds: $$\displaystyle\int_0^1 \log(\mathrm{erf}^{-1}(x)) dx = \left( \dfrac{\gamma}{2} + \log(2) \right),$$ where $\mathrm{erf}^{-1}$ denote...")
 
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
 
==Theorem==
 
==Theorem==
 
The following formula holds:
 
The following formula holds:
$$\displaystyle\int_0^1 \log(\mathrm{erf}^{-1}(x)) dx = \left( \dfrac{\gamma}{2} + \log(2) \right),$$
+
$$\displaystyle\int_0^1 \log(\mathrm{erf}^{-1}(x)) \mathrm{d}x = \dfrac{\gamma}{2} + \log(2),$$
 
where $\mathrm{erf}^{-1}$ denotes the [[inverse error function]], $\log$ denotes the [[logarithm]], and $\gamma$ denotes the [[Euler-Mascheroni constant]].
 
where $\mathrm{erf}^{-1}$ denotes the [[inverse error function]], $\log$ denotes the [[logarithm]], and $\gamma$ denotes the [[Euler-Mascheroni constant]].
  

Latest revision as of 01:54, 1 July 2017

Theorem

The following formula holds: $$\displaystyle\int_0^1 \log(\mathrm{erf}^{-1}(x)) \mathrm{d}x = \dfrac{\gamma}{2} + \log(2),$$ where $\mathrm{erf}^{-1}$ denotes the inverse error function, $\log$ denotes the logarithm, and $\gamma$ denotes the Euler-Mascheroni constant.

Proof

References