Difference between revisions of "Integral representation of Struve function (3)"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== ==Proof== ==References== * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Integral representation of Stru...")
 
Line 1: Line 1:
 
==Theorem==
 
==Theorem==
 +
The following formula holds for $\mathrm{Re}(\nu)>-\dfrac{1}{2}$ and $|\mathrm{arg}(z)|< \dfrac{\pi}{2}$:
 +
$$\mathbf{H}_{\nu}(z)=Y_{\nu}(z) + \dfrac{z^{\nu}}{2^{\nu-1}\sqrt{\pi}\Gamma(\nu+\frac{1}{2})} \displaystyle\int_0^{\infty} e^{-zt} (1+t^2)^{\nu-\frac{1}{2}} \mathrm{d}t,$$
 +
where $\mathbf{H}_{\nu}$ denotes the [[Struve function]], $Y_{\nu}$ denotes the [[Bessel Y|Bessel function of the second kind]], $\pi$ denotes [[pi]], $\Gamma$ denotes the [[gamma] function, and $e^{-zt}$ denotes the [[exponential]] function.
  
 
==Proof==
 
==Proof==
  
 
==References==
 
==References==
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Integral representation of Struve function (2)|next=}}: $12.1.8$
+
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Integral representation of Struve function (2)|next=Recurrence relation for Struve fuction}}: $12.1.8$
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Revision as of 16:23, 4 November 2017

Theorem

The following formula holds for $\mathrm{Re}(\nu)>-\dfrac{1}{2}$ and $|\mathrm{arg}(z)|< \dfrac{\pi}{2}$: $$\mathbf{H}_{\nu}(z)=Y_{\nu}(z) + \dfrac{z^{\nu}}{2^{\nu-1}\sqrt{\pi}\Gamma(\nu+\frac{1}{2})} \displaystyle\int_0^{\infty} e^{-zt} (1+t^2)^{\nu-\frac{1}{2}} \mathrm{d}t,$$ where $\mathbf{H}_{\nu}$ denotes the Struve function, $Y_{\nu}$ denotes the Bessel function of the second kind, $\pi$ denotes pi, $\Gamma$ denotes the [[gamma] function, and $e^{-zt}$ denotes the exponential function.

Proof

References