Difference between revisions of "Integral representation of polygamma for Re(z) greater than 0"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$\psi^{(m)}(z)=(-1)^{m+1}...")
 
Line 1: Line 1:
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<div class="toccolours mw-collapsible mw-collapsed">
<strong>[[Integral representation of polygamma|Theorem]]:</strong> The following formula holds:
+
<strong>[[Integral representation of polygamma|Theorem]]:</strong> The following formula holds for $\mathrm{Re}(z)>0$ and $m>0$:
 
$$\psi^{(m)}(z)=(-1)^{m+1} \displaystyle\int_0^{\infty} \dfrac{t^m e^{-zt}}{1-e^{-t}} \mathrm{d}t,$$
 
$$\psi^{(m)}(z)=(-1)^{m+1} \displaystyle\int_0^{\infty} \dfrac{t^m e^{-zt}}{1-e^{-t}} \mathrm{d}t,$$
 
where $\psi^{(m)}$ denotes the [[polygamma]] and $e^{-zt}$ denotes the [[exponential]].
 
where $\psi^{(m)}$ denotes the [[polygamma]] and $e^{-zt}$ denotes the [[exponential]].

Revision as of 19:23, 3 June 2016

Theorem: The following formula holds for $\mathrm{Re}(z)>0$ and $m>0$: $$\psi^{(m)}(z)=(-1)^{m+1} \displaystyle\int_0^{\infty} \dfrac{t^m e^{-zt}}{1-e^{-t}} \mathrm{d}t,$$ where $\psi^{(m)}$ denotes the polygamma and $e^{-zt}$ denotes the exponential.

Proof: