Difference between revisions of "Integral representation of polygamma for Re(z) greater than 0"

From specialfunctionswiki
Jump to: navigation, search
(References)
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed">
+
==Theorem==
<strong>[[Integral representation of polygamma|Theorem]]:</strong> The following formula holds for $\mathrm{Re}(z)>0$ and $m>0$:
+
The following formula holds for $\mathrm{Re}(z)>0$ and $m>0$:
 
$$\psi^{(m)}(z)=(-1)^{m+1} \displaystyle\int_0^{\infty} \dfrac{t^m e^{-zt}}{1-e^{-t}} \mathrm{d}t,$$
 
$$\psi^{(m)}(z)=(-1)^{m+1} \displaystyle\int_0^{\infty} \dfrac{t^m e^{-zt}}{1-e^{-t}} \mathrm{d}t,$$
 
where $\psi^{(m)}$ denotes the [[polygamma]] and $e^{-zt}$ denotes the [[exponential]].
 
where $\psi^{(m)}$ denotes the [[polygamma]] and $e^{-zt}$ denotes the [[exponential]].
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong> █
+
==Proof==
</div>
+
 
</div>
+
==References==
 +
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Polygamma|next=Value of polygamma at 1}}: $6.4.1$
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Latest revision as of 22:45, 17 March 2017

Theorem

The following formula holds for $\mathrm{Re}(z)>0$ and $m>0$: $$\psi^{(m)}(z)=(-1)^{m+1} \displaystyle\int_0^{\infty} \dfrac{t^m e^{-zt}}{1-e^{-t}} \mathrm{d}t,$$ where $\psi^{(m)}$ denotes the polygamma and $e^{-zt}$ denotes the exponential.

Proof

References