Difference between revisions of "Integral t^(x-1)(1+bt)^(-x-y) dt = b^(-x) B(x,y)"

From specialfunctionswiki
Jump to: navigation, search
 
Line 7: Line 7:
  
 
==References==
 
==References==
* {{BookReference|Higher Transcendental Functions Volume I|1953|Harry Bateman|prev=Integral t^(x-1)(1-t)^(y-1)(1+bt)^(-x-y)dt = (1+b)^(-x)B(x,y)|next=integral (t-b)^(x-1)(a-t)^(y-1)dt=(a-b)^(x+y-1)B(x,y)}}: $\S 1.5 (12)$
+
* {{BookReference|Higher Transcendental Functions Volume I|1953|Arthur Erdélyi|author2=Wilhelm Magnus|author3=Fritz Oberhettinger|author4=Francesco G. Tricomi|prev=Integral t^(x-1)(1-t)^(y-1)(1+bt)^(-x-y)dt = (1+b)^(-x)B(x,y)|next=integral (t-b)^(x-1)(a-t)^(y-1)dt=(a-b)^(x+y-1)B(x,y)}}: $\S 1.5 (12)$
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 21:03, 3 March 2018

Theorem

The following formula holds for $b>0$, $\mathrm{Re}(x)>0$, and $\mathrm{Re}(y)>0$: $$\displaystyle\int_0^{\infty} t^{-x-1} (1+bt)^{-x-y} \mathrm{d}t=b^{-x}B(x,y),$$ where $B$ denotes the beta function.

Proof

References