Difference between revisions of "Inverse error function"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
Line 8: Line 8:
  
 
=Properties=
 
=Properties=
<div class="toccolours mw-collapsible mw-collapsed">
+
[[Derivative of inverse error function]]
<strong>Theorem:</strong> The following formula holds:
 
$$\dfrac{d}{dx} \mathrm{erf}^{-1}(x)=\dfrac{\sqrt{\pi}}{2}e^{[\mathrm{erf}^{-1}(x)]^2}.$$
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
  
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<div class="toccolours mw-collapsible mw-collapsed">

Revision as of 04:36, 16 September 2016

The inverse error function is the inverse function of the error function. We denote it by writing $\mathrm{erf}^{-1}$.

Properties

Derivative of inverse error function

Theorem: The following formula holds: $$\displaystyle\int \mathrm{erf}^{-1}(x) dx = -\dfrac{e^{-[\mathrm{erf}^{-1}(x)]^2}}{\sqrt{\pi}}.$$

Proof:

Theorem: The following formula holds: $$\displaystyle\int_0^1 \mathrm{erf}^{-1}(x) dx=\dfrac{1}{\sqrt{\pi}}.$$

Proof:

Theorem: The following formula holds: $$\displaystyle\int_0^1 \log(\mathrm{erf}^{-1}(x)) dx = \left( \dfrac{\gamma}{2} + \log(2) \right),$$ where $\mathrm{erf}^{-1}$ denotes the inverse error function, $\log$ denotes the logarithm, and $\gamma$ denotes the Euler-Mascheroni constant.

Proof:

<center>Error functions
</center>