Difference between revisions of "Log((1+z)/(1-z)) as continued fraction"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds for $z \in \mathbb{C} \setminus \left[ (-\infty,-1) \bigcup (1,\infty) \right]$: $$\log \left( \dfrac{1+z}{1-z} \right) = \cfrac{2z}{1-...")
 
 
Line 2: Line 2:
 
The following formula holds for $z \in \mathbb{C} \setminus \left[ (-\infty,-1) \bigcup (1,\infty) \right]$:
 
The following formula holds for $z \in \mathbb{C} \setminus \left[ (-\infty,-1) \bigcup (1,\infty) \right]$:
 
$$\log \left( \dfrac{1+z}{1-z} \right) = \cfrac{2z}{1-\cfrac{z^2}{3-\cfrac{4z^2}{5-\cfrac{9z^2}{7-\cfrac{16z^2}{9-\cfrac{25z^2}{11-\cfrac{36z^2}{13-\ddots}}}}}}},$$
 
$$\log \left( \dfrac{1+z}{1-z} \right) = \cfrac{2z}{1-\cfrac{z^2}{3-\cfrac{4z^2}{5-\cfrac{9z^2}{7-\cfrac{16z^2}{9-\cfrac{25z^2}{11-\cfrac{36z^2}{13-\ddots}}}}}}},$$
where $log$ denotes the [[logarithm]].
+
where $\log$ denotes the [[logarithm]].
  
 
==Proof==
 
==Proof==

Latest revision as of 04:56, 21 December 2017

Theorem

The following formula holds for $z \in \mathbb{C} \setminus \left[ (-\infty,-1) \bigcup (1,\infty) \right]$: $$\log \left( \dfrac{1+z}{1-z} \right) = \cfrac{2z}{1-\cfrac{z^2}{3-\cfrac{4z^2}{5-\cfrac{9z^2}{7-\cfrac{16z^2}{9-\cfrac{25z^2}{11-\cfrac{36z^2}{13-\ddots}}}}}}},$$ where $\log$ denotes the logarithm.

Proof

References