Difference between revisions of "Logarithm of quotient of Jacobi theta 1 equals the log of a quotient of sines + a sum of sines"

From specialfunctionswiki
Jump to: navigation, search
 
Line 6: Line 6:
  
 
==References==
 
==References==
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Logarithmic derivative of Jacobi theta 4 equals a sum of sines|next=Logarithm of quotient of Jacobi theta 2 equals the log of a quotient of cosines + a sum of sines}}: 16.30.1
+
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Logarithmic derivative of Jacobi theta 4 equals a sum of sines|next=Logarithm of quotient of Jacobi theta 2 equals the log of a quotient of cosines + a sum of sines}}: $16.30.1$
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 18:05, 5 July 2016

Theorem

The following formula holds: $$\log \left( \dfrac{\vartheta_1(\alpha+\beta,q)}{\vartheta_1(\alpha - \beta,q)} \right)=\log \left( \dfrac{\sin(\alpha+\beta)}{\sin(\alpha-\beta)} \right) +4 \displaystyle\sum_{k=1}^{\infty} \dfrac{q^{2k}}{1-q^{2k}}\sin(2k\alpha)\sin(2k\beta),$$ where $\log$ denotes the logarithm, $\vartheta_1$ denotes the Jacobi theta 1, and

Proof

References