Difference between revisions of "Logarithm of quotient of Jacobi theta 2 equals the log of a quotient of cosines + a sum of sines"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds: $$\log \left( \dfrac{\vartheta_2(\alpha+\beta,q)}{\vartheta_2(\alpha-\beta)} \right) = \log \left( \dfrac{\cos(\alpha+\beta)}{\cos(\al...")
 
 
(One intermediate revision by the same user not shown)
Line 7: Line 7:
  
 
==References==
 
==References==
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Logarithm of quotient of Jacobi theta 1 equals the log of a quotient of sines + a sum of sines|next=}}: 16.30.2
+
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Logarithm of quotient of Jacobi theta 1 equals the log of a quotient of sines + a sum of sines|next=Logarithm of quotient of Jacobi theta 3 equals a sum of sines}}: $16.30.2$
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 18:05, 5 July 2016

Theorem

The following formula holds: $$\log \left( \dfrac{\vartheta_2(\alpha+\beta,q)}{\vartheta_2(\alpha-\beta)} \right) = \log \left( \dfrac{\cos(\alpha+\beta)}{\cos(\alpha-\beta)} \right) + 4\displaystyle\sum_{k=1}^{\infty} \dfrac{(-1)^k}{k} \dfrac{q^k}{1-q^{2k}} \sin(2k\alpha)\sin(2k\beta),$$ where $\log$ denotes the logarithm, $\vartheta_2$ denotes the Jacobi theta 2, $\cos$ denotes cosine, and $\sin$ denotee sine.

Proof

References