Difference between revisions of "Logarithm of quotient of Jacobi theta 3 equals a sum of sines"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds: $$\log \left( \dfrac{\vartheta_3(\alpha+\beta,q)}{\vartheta_3(\alpha-\beta,q)} \right)=4\displaystyle\sum_{k=1}^{\infty} \dfrac{(-1)^k...")
 
 
Line 7: Line 7:
  
 
==References==
 
==References==
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Logarithm of quotient of Jacobi theta 2 equals the log of a quotient of cosines + a sum of sines|next=Logarithm of a quotient of Jacobi theta 4 equals a sum of sines}}: 16.30.3
+
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Logarithm of quotient of Jacobi theta 2 equals the log of a quotient of cosines + a sum of sines|next=Logarithm of a quotient of Jacobi theta 4 equals a sum of sines}}: $16.30.3$
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 18:05, 5 July 2016

Theorem

The following formula holds: $$\log \left( \dfrac{\vartheta_3(\alpha+\beta,q)}{\vartheta_3(\alpha-\beta,q)} \right)=4\displaystyle\sum_{k=1}^{\infty} \dfrac{(-1)^k}{k} \dfrac{q^k}{1-q^{2k}} \sin(2k\alpha) \sin(2k\beta),$$ where $\log$ denotes the logarithm, $\vartheta_3$ denotes the Jacobi theta 3, and $\sin$ denotes the sine.

Proof

References