Difference between revisions of "Logarithmic derivative of Jacobi theta 3 equals a sum of sines"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds: $$\dfrac{\vartheta_3'(u,q)}{\vartheta_3(u,q)} = 4\displaystyle\sum_{k=1}^{\infty} (-1)^k \dfrac{q^k}{1-q^{2k}} \sin(2ku),$$ where $\v...")
 
 
Line 7: Line 7:
  
 
==References==
 
==References==
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Logarithmic derivative of Jacobi theta 2 equals negative tangent + a sum of sines|next=Logarithmic derivative of Jacobi theta 4 equals a sum of sines}}: 16.29.3
+
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Logarithmic derivative of Jacobi theta 2 equals negative tangent + a sum of sines|next=Logarithmic derivative of Jacobi theta 4 equals a sum of sines}}: $16.29.3$
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 18:04, 5 July 2016

Theorem

The following formula holds: $$\dfrac{\vartheta_3'(u,q)}{\vartheta_3(u,q)} = 4\displaystyle\sum_{k=1}^{\infty} (-1)^k \dfrac{q^k}{1-q^{2k}} \sin(2ku),$$ where $\vartheta_3$ denotes the Jacobi theta 3 and $\sin$ denotes the sine.

Proof

References