# Difference between revisions of "Logarithmic derivative of Jacobi theta 3 equals a sum of sines"

From specialfunctionswiki

(Created page with "==Theorem== The following formula holds: $$\dfrac{\vartheta_3'(u,q)}{\vartheta_3(u,q)} = 4\displaystyle\sum_{k=1}^{\infty} (-1)^k \dfrac{q^k}{1-q^{2k}} \sin(2ku),$$ where $\v...") |
|||

Line 7: | Line 7: | ||

==References== | ==References== | ||

− | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Logarithmic derivative of Jacobi theta 2 equals negative tangent + a sum of sines|next=Logarithmic derivative of Jacobi theta 4 equals a sum of sines}}: 16.29.3 | + | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Logarithmic derivative of Jacobi theta 2 equals negative tangent + a sum of sines|next=Logarithmic derivative of Jacobi theta 4 equals a sum of sines}}: $16.29.3$ |

[[Category:Theorem]] | [[Category:Theorem]] | ||

[[Category:Unproven]] | [[Category:Unproven]] |

## Latest revision as of 18:04, 5 July 2016

## Theorem

The following formula holds: $$\dfrac{\vartheta_3'(u,q)}{\vartheta_3(u,q)} = 4\displaystyle\sum_{k=1}^{\infty} (-1)^k \dfrac{q^k}{1-q^{2k}} \sin(2ku),$$ where $\vartheta_3$ denotes the Jacobi theta 3 and $\sin$ denotes the sine.

## Proof

## References

- 1964: Milton Abramowitz and Irene A. Stegun:
*Handbook of mathematical functions*... (previous) ... (next): $16.29.3$