Difference between revisions of "Logarithmic derivative of Riemann zeta in terms of series over primes"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds: $$\dfrac{\zeta'(z)}{\zeta(z)}=-\displaystyle\sum_{p \hspace{2pt} \mathrm{prime}}\displaystyle\sum_{k=1}^{\infty} \dfrac{\log p}{p^{mz}...")
 
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
 
==Theorem==
 
==Theorem==
 
The following formula holds:
 
The following formula holds:
$$\dfrac{\zeta'(z)}{\zeta(z)}=-\displaystyle\sum_{p \hspace{2pt} \mathrm{prime}}\displaystyle\sum_{k=1}^{\infty} \dfrac{\log p}{p^{mz}},$$
+
$$\dfrac{\zeta'(z)}{\zeta(z)}=-\displaystyle\sum_{p \hspace{2pt} \mathrm{prime}}\displaystyle\sum_{k=1}^{\infty} \dfrac{\log p}{p^{kz}},$$
 
where $\zeta$ denotes the [[Riemann zeta]] and $\log$ denotes the [[logarithm]].
 
where $\zeta$ denotes the [[Riemann zeta]] and $\log$ denotes the [[logarithm]].
  
Line 7: Line 7:
  
 
==References==
 
==References==
* {{BookReference|The Zeta-Function of Riemann|1930|Edward Charles Titchmarsh|prev=Series for log(Riemann zeta) in terms of Mangoldt function|next=}}: § Introduction (2'')
+
* {{BookReference|The Zeta-Function of Riemann|1930|Edward Charles Titchmarsh|prev=Series for log(Riemann zeta) in terms of Mangoldt function|next=Logarithmic derivative of Riemann zeta in terms of Mangoldt function}}: § Introduction $(2{'}{'})$
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 02:17, 1 July 2017

Theorem

The following formula holds: $$\dfrac{\zeta'(z)}{\zeta(z)}=-\displaystyle\sum_{p \hspace{2pt} \mathrm{prime}}\displaystyle\sum_{k=1}^{\infty} \dfrac{\log p}{p^{kz}},$$ where $\zeta$ denotes the Riemann zeta and $\log$ denotes the logarithm.

Proof

References