Difference between revisions of "Logarithmic derivative of Riemann zeta in terms of series over primes"

From specialfunctionswiki
Jump to: navigation, search
 
Line 1: Line 1:
 
==Theorem==
 
==Theorem==
 
The following formula holds:
 
The following formula holds:
$$\dfrac{\zeta'(z)}{\zeta(z)}=-\displaystyle\sum_{p \hspace{2pt} \mathrm{prime}}\displaystyle\sum_{k=1}^{\infty} \dfrac{\log p}{p^{mz}},$$
+
$$\dfrac{\zeta'(z)}{\zeta(z)}=-\displaystyle\sum_{p \hspace{2pt} \mathrm{prime}}\displaystyle\sum_{k=1}^{\infty} \dfrac{\log p}{p^{kz}},$$
 
where $\zeta$ denotes the [[Riemann zeta]] and $\log$ denotes the [[logarithm]].
 
where $\zeta$ denotes the [[Riemann zeta]] and $\log$ denotes the [[logarithm]].
  

Latest revision as of 02:17, 1 July 2017

Theorem

The following formula holds: $$\dfrac{\zeta'(z)}{\zeta(z)}=-\displaystyle\sum_{p \hspace{2pt} \mathrm{prime}}\displaystyle\sum_{k=1}^{\infty} \dfrac{\log p}{p^{kz}},$$ where $\zeta$ denotes the Riemann zeta and $\log$ denotes the logarithm.

Proof

References