Difference between revisions of "Logarithmic integral"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
The logarithmic integral is
 
The logarithmic integral is
 
$$\mathrm{li}(x) = \displaystyle\int_0^x \dfrac{dt}{\log(t)},$$
 
$$\mathrm{li}(x) = \displaystyle\int_0^x \dfrac{dt}{\log(t)},$$
where $\log$ denotes the [[logarithm]]. The logarithmic integral is related to the [[exponential integral]] by the formula
+
where $\log$ denotes the [[logarithm]].  
$$\mathrm{li}(x)=\mathrm{Ei}( \log(x)).$$
 
  
 
<div align="center">
 
<div align="center">
Line 11: Line 10:
  
 
=Properties=
 
=Properties=
 
+
{{:Relationship between logarithmic integral and exponential integral}}
 
{{:Prime number theorem, logarithmic integral}}
 
{{:Prime number theorem, logarithmic integral}}

Revision as of 06:44, 5 April 2015

The logarithmic integral is $$\mathrm{li}(x) = \displaystyle\int_0^x \dfrac{dt}{\log(t)},$$ where $\log$ denotes the logarithm.

Properties

Theorem

The following formula holds: $$\mathrm{li}(x)=\mathrm{Ei}( \log(x)),$$ where $\mathrm{li}$ denotes the logarithmic integral, $\mathrm{Ei}$ denotes the exponential integral Ei, and $\log$ denotes the logarithm.

Proof

References

Theorem

The following formula holds: $$\lim_{x \rightarrow \infty} \dfrac{\pi(x)}{\mathrm{li}(x)}=1,$$ where $\pi$ denotes the prime counting function and $\mathrm{li}$ denotes the logarithmic integral.

Proof

References