Difference between revisions of "Möbius"

From specialfunctionswiki
Jump to: navigation, search
Line 31: Line 31:
 
[https://www.youtube.com/watch?v=yiyuu9HiXUI Möbius Function - Merten's function]<br />
 
[https://www.youtube.com/watch?v=yiyuu9HiXUI Möbius Function - Merten's function]<br />
 
[https://www.youtube.com/watch?v=LyyLE5ROPXA Number Theory 27: Mobius function is multiplicative]<br />
 
[https://www.youtube.com/watch?v=LyyLE5ROPXA Number Theory 27: Mobius function is multiplicative]<br />
 +
 +
=References=
 +
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=findme|next=Reciprocal of Riemann zeta as a sum of Möbius function for Re(z) greater than 1}}: 24.3.1 A
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Revision as of 01:16, 22 June 2016

The Möbius function is the function $\mu$ defined by the formula $$\mu(n) = \left\{ \begin{array}{ll} 1 &; n \mathrm{\hspace{2pt}is\hspace{2pt}a\hspace{2pt}squarefree\hspace{2pt}positive\hspace{2pt}integer\hspace{2pt}with\hspace{2pt}even\hspace{2pt}number\hspace{2pt}of\hspace{2pt}prime\hspace{2pt}factors} \\ -1 &; n \mathrm{\hspace{2pt}is\hspace{2pt}a\hspace{2pt}squarefree\hspace{2pt}positive\hspace{2pt}integer\hspace{2pt}with\hspace{2pt}odd\hspace{2pt}number\hspace{2pt}of\hspace{2pt}prime\hspace{2pt}factors} \\ 0 &; n\mathrm{\hspace{2pt}has\hspace{2pt}a\hspace{2pt}square\hspace{2pt}divisor}. \end{array} \right.$$


Properties

Theorem: If $s \in \mathbb{C}$ with $\mathrm{Re}(s) > 1$, then $$\displaystyle\sum_{n=1}^{\infty} \dfrac{\mu(n)}{n^s} = \dfrac{1}{\zeta(s)},$$ where $\zeta$ is the Riemann zeta function.

Proof:

Relationship between prime zeta, Möbius function, logarithm, and Riemann zeta

Videos

Mobius Function Example
Möbius Function - Introduction
Möbius Function - Merten's function
Number Theory 27: Mobius function is multiplicative

References