Difference between revisions of "Mittag-Leffler"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The Mittag-Leffler function $E_{\alpha, \beta}$ is defined by the series $$E_{\alpha, \beta}(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{z^k}{\Gamma(\alpha k + \beta)},$$ where...")
 
Line 1: Line 1:
The Mittag-Leffler function $E_{\alpha, \beta}$ is defined by the series
+
The Mittag-Leffler function $E_{\alpha, \beta}$ is defined for $z, \alpha, \beta \in \mathbb{C}$ with $\mathrm{Re}(\alpha), \mathrm{Re}(\beta) > 0$ by the series
 
$$E_{\alpha, \beta}(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{z^k}{\Gamma(\alpha k + \beta)},$$
 
$$E_{\alpha, \beta}(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{z^k}{\Gamma(\alpha k + \beta)},$$
 
where $\Gamma$ denotes the [[gamma]] function.
 
where $\Gamma$ denotes the [[gamma]] function.

Revision as of 16:47, 2 January 2018

The Mittag-Leffler function $E_{\alpha, \beta}$ is defined for $z, \alpha, \beta \in \mathbb{C}$ with $\mathrm{Re}(\alpha), \mathrm{Re}(\beta) > 0$ by the series $$E_{\alpha, \beta}(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{z^k}{\Gamma(\alpha k + \beta)},$$ where $\Gamma$ denotes the gamma function.

Properties

References