Difference between revisions of "Modified Bessel K"

From specialfunctionswiki
Jump to: navigation, search
Line 2: Line 2:
 
$$K_{\nu}(z)=\dfrac{\pi}{2} \dfrac{I_{-\nu}(z)-I_{\nu}(z)}{\sin(\nu \pi)},$$
 
$$K_{\nu}(z)=\dfrac{\pi}{2} \dfrac{I_{-\nu}(z)-I_{\nu}(z)}{\sin(\nu \pi)},$$
 
where $I_{\nu}$ is the [[Modified Bessel I sub nu|modified Bessel function of the first kind]].
 
where $I_{\nu}$ is the [[Modified Bessel I sub nu|modified Bessel function of the first kind]].
 +
 +
<div align="center">
 +
<gallery>
 +
File:Domaincoloringbesselksub1.png|[[Domain coloring]] of $K_1$.
 +
File:Page 374 (Abramowitz&Stegun).jpg|Modified Bessel functions from Abramowitz&Stegun.
 +
</gallery>
 +
</div>
 +
  
 
=Properties=
 
=Properties=

Revision as of 17:50, 25 July 2015

The modified Bessel function of the second kind is defined by $$K_{\nu}(z)=\dfrac{\pi}{2} \dfrac{I_{-\nu}(z)-I_{\nu}(z)}{\sin(\nu \pi)},$$ where $I_{\nu}$ is the modified Bessel function of the first kind.


Properties

Proposition: The following formula holds: $$K_{\frac{1}{2}}(z)=\sqrt{\dfrac{\pi}{2}}\dfrac{e^{-z}}{\sqrt{z}}; z>0.$$

Proof:

Theorem

The following formula holds: $$\mathrm{Ai}(z)=\dfrac{1}{\pi} \sqrt{\dfrac{z}{3}} \mathrm{K}_{\frac{1}{3}} \left( \dfrac{2}{3} x^{\frac{3}{2}} \right),$$ where $\mathrm{Ai}$ is the Airy Ai function and $K_{\nu}$ denotes the modified Bessel $K$.

Proof

References

<center>Bessel functions
</center>

References

[1]