Difference between revisions of "Orthogonality of Laguerre L"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds: $$\displaystyle\int_0^{\infty} e^{-x} L_n(x) L_m(x) \mathrm{d}x = \delta_{mn},$$ where $e^{-x}$ denotes the exponential, $L_n$ den...")
 
 
Line 7: Line 7:
  
 
==References==
 
==References==
* {{BookReference|Special Functions for Scientists and Engineers|1968|W.W. Bell|prev=L n'(0)=-n|next=findme}}: Theorem 6.4
+
* {{BookReference|Special Functions for Scientists and Engineers|1968|W.W. Bell|prev=L n'(0)=-n|next=(n+1)L (n+1)(x) = (2n+1-x)L n(x)-nL (n-1)(x)}}: Theorem 6.4
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 14:30, 15 March 2018

Theorem

The following formula holds: $$\displaystyle\int_0^{\infty} e^{-x} L_n(x) L_m(x) \mathrm{d}x = \delta_{mn},$$ where $e^{-x}$ denotes the exponential, $L_n$ denotes Laguerre L, and $\delta$ denotes Kronecker delta.

Proof

References