Difference between revisions of "Pochhammer"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
Line 10: Line 10:
 
where $s(n,k)$ denotes a [[Stirling number of the first kind]].
 
where $s(n,k)$ denotes a [[Stirling number of the first kind]].
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
<strong>Proof:</strong> proof goes here █  
+
<strong>Proof:</strong>
 +
</div>
 +
</div>
 +
 
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> The following formula holds:
 +
$$\displaystyle\sum_{k=1}^n \dfrac{1}{(k)_p} = \dfrac{1}{(p-1)\Gamma(p)} - \dfrac{n\Gamma(n)}{(p-1)\Gamma(n+p)},$$
 +
where $s(n,k)$ denotes a [[Stirling number of the first kind]].
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong>  █  
 
</div>
 
</div>
 
</div>
 
</div>

Revision as of 07:47, 8 February 2015

The Pochhammer symbol is a notation that denotes the "rising factorial" function. It is defined by $$(a)_0 = 1;$$ $$(a)_n=a(a+1)(a+2)\ldots(a+n-1)=\dfrac{\Gamma(a+n)}{\Gamma(a)},$$ where $\Gamma$ denotes the gamma function.

Properties

Proposition: The following formula holds: $$(a)_n = \displaystyle\sum_{k=0}^n (-1)^{n-k}s(n,k)a^k,$$ where $s(n,k)$ denotes a Stirling number of the first kind.

Proof:

Theorem: The following formula holds: $$\displaystyle\sum_{k=1}^n \dfrac{1}{(k)_p} = \dfrac{1}{(p-1)\Gamma(p)} - \dfrac{n\Gamma(n)}{(p-1)\Gamma(n+p)},$$ where $s(n,k)$ denotes a Stirling number of the first kind.

Proof:

References

Abramowitz and Stegun