Difference between revisions of "Polygamma recurrence relation"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$\psi^{(m)}(z+1)=\psi^{(m)}(z)+\...")
 
(References)
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed">
+
==Theorem==
<strong>[[Polygamma recurrence relation|Theorem]]:</strong> The following formula holds:
+
The following formula holds:
 
$$\psi^{(m)}(z+1)=\psi^{(m)}(z)+\dfrac{(-1)^mm!}{z^{m+1}},$$
 
$$\psi^{(m)}(z+1)=\psi^{(m)}(z)+\dfrac{(-1)^mm!}{z^{m+1}},$$
 
where $\psi^{(m)}$ denotes the [[polygamma]] and $m!$ denotes the [[factorial]].
 
where $\psi^{(m)}$ denotes the [[polygamma]] and $m!$ denotes the [[factorial]].
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong> █
+
==Proof==
</div>
+
 
</div>
+
==References==
 +
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Value of derivative of trigamma at positive integer plus 1/2|next=Polygamma reflection formula}}: $6.4.6$
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Latest revision as of 22:46, 17 March 2017

Theorem

The following formula holds: $$\psi^{(m)}(z+1)=\psi^{(m)}(z)+\dfrac{(-1)^mm!}{z^{m+1}},$$ where $\psi^{(m)}$ denotes the polygamma and $m!$ denotes the factorial.

Proof

References