Difference between revisions of "Prime number theorem, pi and x/log(x)"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> <strong>Theorem (Prime Number Theorem):</strong> The functio...")
 
Line 2: Line 2:
 
<strong>[[Prime number theorem, pi and x/log(x)|Theorem (Prime Number Theorem)]]:</strong> The function $\pi(x)$ obeys the formula
 
<strong>[[Prime number theorem, pi and x/log(x)|Theorem (Prime Number Theorem)]]:</strong> The function $\pi(x)$ obeys the formula
 
$$\lim_{x \rightarrow \infty} \dfrac{\pi(x)}{\frac{x}{\log(x)}}=1,$$
 
$$\lim_{x \rightarrow \infty} \dfrac{\pi(x)}{\frac{x}{\log(x)}}=1,$$
where $\pi$ denotes the [[Prime counting|Prime counting function]] and $\log$ denotes the [[logarithm]].
+
where $\pi$ denotes the [[Prime counting|prime counting function]] and $\log$ denotes the [[logarithm]].
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong>  
 
<strong>Proof:</strong>  
 
</div>
 
</div>
 
</div>
 
</div>

Revision as of 06:36, 5 April 2015

Theorem (Prime Number Theorem): The function $\pi(x)$ obeys the formula $$\lim_{x \rightarrow \infty} \dfrac{\pi(x)}{\frac{x}{\log(x)}}=1,$$ where $\pi$ denotes the prime counting function and $\log$ denotes the logarithm.

Proof: