Difference between revisions of "Prime zeta P"

From specialfunctionswiki
Jump to: navigation, search
Line 4: Line 4:
  
 
[[File:Primezeta.png|500px]]
 
[[File:Primezeta.png|500px]]
 +
 +
=Properties=
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> The following formula holds:
 +
$$P(z)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\mu(k)}{k} \log \zeta(kz),$$
 +
where $\mu$ denotes the [[Möbius]] function, $\log$ denotes the [[logarithm]], and $\zeta$ denotes the [[Riemann zeta function]].
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
  
 
=References=
 
=References=
 
Fröberg, Carl-Erik . On the prime zeta function. Nordisk Tidskr. Informationsbehandling (BIT)  8  1968 187--202.
 
Fröberg, Carl-Erik . On the prime zeta function. Nordisk Tidskr. Informationsbehandling (BIT)  8  1968 187--202.

Revision as of 23:03, 6 May 2015

The prime zeta function is defined by $$P(z) = \displaystyle\sum_{p \mathrm{\hspace{2pt} prime}} \dfrac{1}{p^z},$$ where $\mathrm{Re}(z)>1$. It can be extended outside of this domain via analytic continuation.

500px

Properties

Theorem: The following formula holds: $$P(z)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\mu(k)}{k} \log \zeta(kz),$$ where $\mu$ denotes the Möbius function, $\log$ denotes the logarithm, and $\zeta$ denotes the Riemann zeta function.

Proof:

References

Fröberg, Carl-Erik . On the prime zeta function. Nordisk Tidskr. Informationsbehandling (BIT) 8 1968 187--202.