Difference between revisions of "Product representation of q-exponential E sub 1/q"

From specialfunctionswiki
Jump to: navigation, search
 
(2 intermediate revisions by the same user not shown)
Line 2: Line 2:
 
The following formula holds for $0 \leq |q| \leq 1$:
 
The following formula holds for $0 \leq |q| \leq 1$:
 
$$E_{\frac{1}{q}}(z) = \displaystyle\prod_{k=0}^{\infty} \left[ 1 + (1-q)zq^k \right],$$
 
$$E_{\frac{1}{q}}(z) = \displaystyle\prod_{k=0}^{\infty} \left[ 1 + (1-q)zq^k \right],$$
where $E_{\frac{1}{q}}$ denotes the [[Q-exponential E sub 1/q]].
+
where $E_{\frac{1}{q}}$ denotes the [[Q-exponential E sub 1/q|$q$-exponential $E_{\frac{1}{q}}$]].
  
 
==Proof==
 
==Proof==
  
 
==References==
 
==References==
* {{BookReference|A Comprehensive Treatment of q-Calculus|2012|Thomas Ernst|prev=Q-difference equation for q-exponential E sub 1/q|next=}}: (6.155)
+
* {{BookReference|A Comprehensive Treatment of q-Calculus|2012|Thomas Ernst|prev=Q-difference equation for q-exponential E sub 1/q|next=Limit of q-exponential E sub 1/q for 0 less than q less than 1}}: ($6.155$)
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 07:41, 18 December 2016

Theorem

The following formula holds for $0 \leq |q| \leq 1$: $$E_{\frac{1}{q}}(z) = \displaystyle\prod_{k=0}^{\infty} \left[ 1 + (1-q)zq^k \right],$$ where $E_{\frac{1}{q}}$ denotes the $q$-exponential $E_{\frac{1}{q}}$.

Proof

References