Difference between revisions of "Pythagorean identity for sin and cos"

From specialfunctionswiki
Jump to: navigation, search
Line 7: Line 7:
 
$$\sin(z)=\dfrac{e^{iz}-e^{-iz}}{2i}$$
 
$$\sin(z)=\dfrac{e^{iz}-e^{-iz}}{2i}$$
 
and
 
and
$$\cos(z)=\dfrac{e^{-iz}+e^{-iz}}{2},$$
+
$$\cos(z)=\dfrac{e^{iz}+e^{-iz}}{2},$$
 
we see
 
we see
 
$$\begin{array}{ll}
 
$$\begin{array}{ll}
\sin^2(z)&=\left( \dfrac{e^{iz}-e^{-iz}}{2i} \right)^2 + \left( \dfrac{e^{iz}+e^{-iz}}{2} \right)^2 \\
+
\sin^2(z)+\cos^2(z)&=\left( \dfrac{e^{iz}-e^{-iz}}{2i} \right)^2 + \left( \dfrac{e^{iz}+e^{-iz}}{2} \right)^2 \\
 
&= -\dfrac{1}{4} (e^{2iz}-2+e^{-2iz})+ \dfrac{1}{4} (e^{2iz}+2+e^{-2iz}) \\
 
&= -\dfrac{1}{4} (e^{2iz}-2+e^{-2iz})+ \dfrac{1}{4} (e^{2iz}+2+e^{-2iz}) \\
 
&= 1,
 
&= 1,

Revision as of 20:41, 15 May 2016

Theorem: (Pythagorean identity) The following formula holds for all $x$: $$\sin^2(x)+\cos^2(x)=1,$$ where $\sin$ denotes the sine function and $\cos$ denotes the cosine function.

Proof: From the definitions $$\sin(z)=\dfrac{e^{iz}-e^{-iz}}{2i}$$ and $$\cos(z)=\dfrac{e^{iz}+e^{-iz}}{2},$$ we see $$\begin{array}{ll} \sin^2(z)+\cos^2(z)&=\left( \dfrac{e^{iz}-e^{-iz}}{2i} \right)^2 + \left( \dfrac{e^{iz}+e^{-iz}}{2} \right)^2 \\ &= -\dfrac{1}{4} (e^{2iz}-2+e^{-2iz})+ \dfrac{1}{4} (e^{2iz}+2+e^{-2iz}) \\ &= 1, \end{array}$$ as was to be shown. █