Pythagorean identity for sin and cos

From specialfunctionswiki
Revision as of 20:41, 15 May 2016 by Tom (talk | contribs)
Jump to: navigation, search

Theorem: (Pythagorean identity) The following formula holds for all $x$: $$\sin^2(x)+\cos^2(x)=1,$$ where $\sin$ denotes the sine function and $\cos$ denotes the cosine function.

Proof: From the definitions $$\sin(z)=\dfrac{e^{iz}-e^{-iz}}{2i}$$ and $$\cos(z)=\dfrac{e^{iz}+e^{-iz}}{2},$$ we see $$\begin{array}{ll} \sin^2(z)+\cos^2(z)&=\left( \dfrac{e^{iz}-e^{-iz}}{2i} \right)^2 + \left( \dfrac{e^{iz}+e^{-iz}}{2} \right)^2 \\ &= -\dfrac{1}{4} (e^{2iz}-2+e^{-2iz})+ \dfrac{1}{4} (e^{2iz}+2+e^{-2iz}) \\ &= 1, \end{array}$$ as was to be shown. █