Difference between revisions of "Pythagorean identity for sinh and cosh"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$\cosh^2(z)-\sinh^2(z)=1,$$ where $\cosh$ denotes the cosh|hyper...")
 
Line 4: Line 4:
 
where $\cosh$ denotes the [[cosh|hyperbolic cosine]] and $\sinh$ denotes the [[sinh|hyperbolic sine]].
 
where $\cosh$ denotes the [[cosh|hyperbolic cosine]] and $\sinh$ denotes the [[sinh|hyperbolic sine]].
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
<strong>Proof:</strong> █  
+
<strong>Proof:</strong> From the definitions
 +
$$\cosh(z)=\dfrac{e^{z}+e^{-z}}{2}$$
 +
and
 +
$$\sinh(z)=\dfrac{e^{z}-e^{-z}}{2},$$
 +
we see
 +
$$\begin{array}{ll}
 +
\cosh^2(z) - \sinh^2(z) &= \left( \dfrac{e^{z}+e^{-z}}{2} \right)^2 - \left( \dfrac{e^{z}-e^{-z}}{2} \right)^2 \\
 +
&= \dfrac{1}{4} \left( e^{2z}+2+e^{-2z}-e^{2z}+2-e^{-2z} \right) \\
 +
&= 1,
 +
\end{array}$$
 +
as was to be shown. █  
 
</div>
 
</div>
 
</div>
 
</div>

Revision as of 20:43, 15 May 2016

Theorem: The following formula holds: $$\cosh^2(z)-\sinh^2(z)=1,$$ where $\cosh$ denotes the hyperbolic cosine and $\sinh$ denotes the hyperbolic sine.

Proof: From the definitions $$\cosh(z)=\dfrac{e^{z}+e^{-z}}{2}$$ and $$\sinh(z)=\dfrac{e^{z}-e^{-z}}{2},$$ we see $$\begin{array}{ll} \cosh^2(z) - \sinh^2(z) &= \left( \dfrac{e^{z}+e^{-z}}{2} \right)^2 - \left( \dfrac{e^{z}-e^{-z}}{2} \right)^2 \\ &= \dfrac{1}{4} \left( e^{2z}+2+e^{-2z}-e^{2z}+2-e^{-2z} \right) \\ &= 1, \end{array}$$ as was to be shown. █