Difference between revisions of "Q-Binomial"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
(Properties)
Line 1: Line 1:
 
$${n \brack m}_q = \dfrac{(q;q)_n}{(q;q)m(q;q)_{n-m}},$$
 
$${n \brack m}_q = \dfrac{(q;q)_n}{(q;q)m(q;q)_{n-m}},$$
 
where $(q;q)_k$ is the [[q-Pochhammer symbol]].
 
where $(q;q)_k$ is the [[q-Pochhammer symbol]].
 +
 +
The $q$-Binomial function is
 +
$${n \brack k}_q = \dfrac{(q;q)_n}{(q;q)_k (q;q)_{n-k}}.$$
  
 
=Properties=
 
=Properties=
Line 10: Line 13:
 
</div>
 
</div>
 
</div>
 
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 +
<strong>Corollary:</strong>
 +
* $\displaystyle\sum_{k=0}^{\infty} \dfrac{x^k}{(q;q)_k} = \dfrac{1}{(x;q)_{\infty}}; |x|<1,|q|<1$
 +
* $\displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^kq^{k \choose 2}x^k}{(q;q)_k} =(x;q)_{\infty} ; |q|<1$
 +
* $\displaystyle\sum_{k=0}^N {N \brack k}_q (-1)^k q^{k \choose 2} x^k = (x;q)_N = (1-x)\ldots(1-xq^{N-1})$
 +
* $\displaystyle\sum_{k=0}^{\infty} {{N+k-1} \brack k}_q x^k = \dfrac{1}{(x;q)_N} = \dfrac{1}{(1-x)\ldots(1-xq^{N-1})} ;|x|<1$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> proof goes here █
 +
</div>
 +
</div>
 +
 +
=References=
 +
*Special Functions - G. Andrews, R. Askey, R. Roy

Revision as of 18:41, 27 July 2014

$${n \brack m}_q = \dfrac{(q;q)_n}{(q;q)m(q;q)_{n-m}},$$ where $(q;q)_k$ is the q-Pochhammer symbol.

The $q$-Binomial function is $${n \brack k}_q = \dfrac{(q;q)_n}{(q;q)_k (q;q)_{n-k}}.$$

Properties

Theorem: For $|x|<1,|q|<1$, $$\displaystyle\sum_{k=0}^{\infty} \dfrac{(a;q)_k}{(q;q)_k} x^k = \dfrac{(ax;q)_{\infty}}{(x;q)_{\infty}}.$$

Proof: proof goes here █

Corollary:

  • $\displaystyle\sum_{k=0}^{\infty} \dfrac{x^k}{(q;q)_k} = \dfrac{1}{(x;q)_{\infty}}; |x|<1,|q|<1$
  • $\displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^kq^{k \choose 2}x^k}{(q;q)_k} =(x;q)_{\infty} ; |q|<1$
  • $\displaystyle\sum_{k=0}^N {N \brack k}_q (-1)^k q^{k \choose 2} x^k = (x;q)_N = (1-x)\ldots(1-xq^{N-1})$
  • $\displaystyle\sum_{k=0}^{\infty} {{N+k-1} \brack k}_q x^k = \dfrac{1}{(x;q)_N} = \dfrac{1}{(1-x)\ldots(1-xq^{N-1})} ;|x|<1$

Proof: proof goes here █

References

  • Special Functions - G. Andrews, R. Askey, R. Roy