Difference between revisions of "Q-exponential e sub q"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
The $q$-exponential $e_q$ is defined by the formula
 
The $q$-exponential $e_q$ is defined by the formula
$$e_q(z) = $$
+
$$e_q(z) =\displaystyle\sum_{k=0}^{\infty} \dfrac{z^k}{(q;q)_k}.$$
  
 
=Properties=
 
=Properties=
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> The following formula holds:
 +
$$e_q(z)=\dfrac{1}{(z;q)_{\infty}},$$
 +
where $e_q$ is the [[Q-exponential e|$q$-exponential $E$]] and $(z;q)_{\infty}$ denotes the [[q-Pochhammer symbol]].
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 
{{:Q-Euler formula for e sub q}}
 
{{:Q-Euler formula for e sub q}}

Revision as of 17:53, 20 May 2015

The $q$-exponential $e_q$ is defined by the formula $$e_q(z) =\displaystyle\sum_{k=0}^{\infty} \dfrac{z^k}{(q;q)_k}.$$

Properties

Theorem: The following formula holds: $$e_q(z)=\dfrac{1}{(z;q)_{\infty}},$$ where $e_q$ is the $q$-exponential $E$ and $(z;q)_{\infty}$ denotes the q-Pochhammer symbol.

Proof:

Theorem

The following formula holds: $$e_q(iz)=\cos_q(z)+i\sin_q(z),$$ where $e_q$ is the $q$-exponential $e_q$, $\cos_q$ is the $q$-$\cos$ function and $\sin_q$ is the $q$-$\sin$ function.

Proof

References