Difference between revisions of "Q-number"

From specialfunctionswiki
Jump to: navigation, search
(References)
 
(9 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
__NOTOC__
 
Let $a \in \mathbb{C}$ and $q \in \mathbb{C} \setminus \{0,1\}$. Define the $q$-number $[a]_q$ by  
 
Let $a \in \mathbb{C}$ and $q \in \mathbb{C} \setminus \{0,1\}$. Define the $q$-number $[a]_q$ by  
 
$$[a]_q=\dfrac{1-q^a}{1-q}.$$
 
$$[a]_q=\dfrac{1-q^a}{1-q}.$$
  
 
=Properties=
 
=Properties=
[[q-number when a=n is a natural number]]<br />
+
[[q-number when a=n is a natural number|$q$-number when $a=n$ is a natural number]]<br />
[[q-factorial]]<br />
+
[[q-number of a negative|$q$-number of a negative]]<br />
 +
[[1/q-number as a q-number]]<br />
  
 +
=See Also=
 +
[[q-factorial|$q$-factorial]]<br />
 +
 +
=Notes=
 +
[http://mathworld.wolfram.com/q-Bracket.html Mathworld] calls $[a]_q$ the $q$-bracket
  
 
=References=
 
=References=
* {{BookReference|A Comprehensive Treatment of q-Calculus|2012|Thomas Ernst|prev=findme|next=q-number when a=n is a natural number}}: (6.1)
+
* {{PaperReference|q-exponential and q-gamma functions. I. q-exponential functions|1994|D.S. McAnally|prev=Q-derivative power rule|next=findme}} $(2.3)$ (calls $[a]_q$ $(a)_q$)
 +
* {{BookReference|Special Functions|1999|George E. Andrews|author2=Richard Askey|author3=Ranjan Roy|prev=findme|next=q-factorial}}
 +
* {{BookReference|Quantum Calculus|2002|Victor Kac|author2=Pokman Cheung||prev=findme|next=findme}} $(1.9)$
 +
* {{BookReference|Quantum Calculus|2002|Victor Kac|author2=Pokman Cheung||prev=findme|next=findme}} $(3.8)$
 +
* {{BookReference|A Comprehensive Treatment of q-Calculus|2012|Thomas Ernst|prev=findme|next=q-number when a=n is a natural number}}: ($6.1$) (calls $[a]_q$ $\{a\}_q$)
 +
 
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Latest revision as of 04:17, 26 December 2016

Let $a \in \mathbb{C}$ and $q \in \mathbb{C} \setminus \{0,1\}$. Define the $q$-number $[a]_q$ by $$[a]_q=\dfrac{1-q^a}{1-q}.$$

Properties

$q$-number when $a=n$ is a natural number
$q$-number of a negative
1/q-number as a q-number

See Also

$q$-factorial

Notes

Mathworld calls $[a]_q$ the $q$-bracket

References