Difference between revisions of "Q-shifted factorial"

From specialfunctionswiki
Jump to: navigation, search
(References)
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
The $q$-shifted factorial $(a;q)_n$ is defined for $a,q \in \mathbb{C}$ by $(a;q)_0=1$ and for $n=1,2,3,\ldots$ or $n=\infty$, by
 
The $q$-shifted factorial $(a;q)_n$ is defined for $a,q \in \mathbb{C}$ by $(a;q)_0=1$ and for $n=1,2,3,\ldots$ or $n=\infty$, by
$$(a;q)_n=\displaystyle\prod_{k=0}^{n-1} 1-aq^{k}=(1-a)(1-aq)(1-aq^2)\ldots(1-aq^{n-1}).$$
+
$$(a;q)_n=\left\{
 +
\begin{array}{ll}
 +
1, & \quad n=0 \\
 +
\displaystyle\prod_{k=0}^{n-1} 1-aq^{k}=(1-a)(1-aq)(1-aq^2)\ldots(1-aq^{n-1}), & \quad n=1,2,3,\ldots \\
 +
\end{array} \right.$$
  
 
=Properties=
 
=Properties=
 +
 +
=See Also=
 +
[[Q-Pochhammer]]<br />
  
 
=References=
 
=References=
 +
* {{BookReference|Higher Transcendental Functions Volume I|1953|Arthur Erdélyi|author2=Wilhelm Magnus|author3=Fritz Oberhettinger|author4=Francesco G. Tricomi|prev=findme|next=Basic hypergeometric phi}}: $4.8 (1) (2)$ (assumes $|q|<1$)
 
* {{PaperReference|The q-gamma function for q greater than 1|1980|Daniel S. Moak|prev=Q-Gamma|next=Q-Gamma at z+1}}
 
* {{PaperReference|The q-gamma function for q greater than 1|1980|Daniel S. Moak|prev=Q-Gamma|next=Q-Gamma at z+1}}
 
* {{PaperReference|q-Special functions, a tutorial|1994|Tom H. Koornwinder|prev=findme|next=findme}}  
 
* {{PaperReference|q-Special functions, a tutorial|1994|Tom H. Koornwinder|prev=findme|next=findme}}  
* {{BookReference|Special Functions|1999|George E. Andrews|author2=Richard Askey|author3=Ranjan Roy|prev=findme|next=findme}} $(10.2.1)$ (does not specifically say "$q$-shifted factorial")
+
* {{BookReference|Special Functions|1999|George E. Andrews|author2=Richard Askey|author3=Ranjan Roy|prev=findme|next=findme}} $(10.2.1)$  
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Latest revision as of 01:14, 25 December 2018

The $q$-shifted factorial $(a;q)_n$ is defined for $a,q \in \mathbb{C}$ by $(a;q)_0=1$ and for $n=1,2,3,\ldots$ or $n=\infty$, by $$(a;q)_n=\left\{ \begin{array}{ll} 1, & \quad n=0 \\ \displaystyle\prod_{k=0}^{n-1} 1-aq^{k}=(1-a)(1-aq)(1-aq^2)\ldots(1-aq^{n-1}), & \quad n=1,2,3,\ldots \\ \end{array} \right.$$

Properties

See Also

Q-Pochhammer

References