Difference between revisions of "Ramanujan tau"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The Ramanujan tau function $\tau \colon \mathbb{N} \rightarrow \mathbb{Z}$ is defined by the formulas $$\displaystyle\sum_{n=1}^{\infty} \tau(n)q^n = q \prod_{n=1}^{\infty} (1...")
 
Line 2: Line 2:
 
$$\displaystyle\sum_{n=1}^{\infty} \tau(n)q^n = q \prod_{n=1}^{\infty} (1-q^n)^{24} = \eta(z)^{24}=\Delta(z),$$
 
$$\displaystyle\sum_{n=1}^{\infty} \tau(n)q^n = q \prod_{n=1}^{\infty} (1-q^n)^{24} = \eta(z)^{24}=\Delta(z),$$
 
where $q=e^{2\pi i z}$ with $\mathrm{Re}(z)>0$, $\eta$ denotes the [[Dedekind eta function]], and $\Delta$ denotes the [[discriminant modular form]].
 
where $q=e^{2\pi i z}$ with $\mathrm{Re}(z)>0$, $\eta$ denotes the [[Dedekind eta function]], and $\Delta$ denotes the [[discriminant modular form]].
 +
 +
<div align="center">
 +
<gallery>
 +
File:Ramanujantau.png|Plot of $\tau(n)$ for $n=0,1,\ldots,250$.
 +
</gallery>
 +
</div>
 +
 +
  
 
=Properties=
 
=Properties=

Revision as of 23:03, 1 April 2015

The Ramanujan tau function $\tau \colon \mathbb{N} \rightarrow \mathbb{Z}$ is defined by the formulas $$\displaystyle\sum_{n=1}^{\infty} \tau(n)q^n = q \prod_{n=1}^{\infty} (1-q^n)^{24} = \eta(z)^{24}=\Delta(z),$$ where $q=e^{2\pi i z}$ with $\mathrm{Re}(z)>0$, $\eta$ denotes the Dedekind eta function, and $\Delta$ denotes the discriminant modular form.


Properties

Theorem: $\tau(mn)=\tau(m)\tau(n)$ if $\gcd$$(m,n)=1$

Proof:

Theorem: $\tau(p^{r+1})=\tau(p)\tau(p^r)-p^{11}\tau(p^{r-1})$ whenever $p$ is prime and $r>0$

Proof:

Theorem: $|tau(p)| \leq 2p^{\frac{11}{2}}$ for all primes $p$

Proof: