Difference between revisions of "Reciprocal gamma written as an infinite product"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds: $$\dfrac{1}{\Gamma(z)} = ze^{\gamma z} \displaystyle\prod_{k=1}^{\infty} \left( 1 + \dfrac{z}{k}\right)e^{-\frac{z}{k}},$$ where $\Gam...")
 
 
(13 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
==Theorem==
 
==Theorem==
The following formula holds:
+
The following formula holds for all $z \in \mathbb{C}$:
 
$$\dfrac{1}{\Gamma(z)} = ze^{\gamma z} \displaystyle\prod_{k=1}^{\infty} \left( 1 + \dfrac{z}{k}\right)e^{-\frac{z}{k}},$$
 
$$\dfrac{1}{\Gamma(z)} = ze^{\gamma z} \displaystyle\prod_{k=1}^{\infty} \left( 1 + \dfrac{z}{k}\right)e^{-\frac{z}{k}},$$
where $\Gamma$ is the [[gamma]] function, $\dfrac{1}{\Gamma}$ is the [[reciprocal gamma]] function, and $\gamma$ is the [[Euler-Mascheroni constant]].
+
where $\dfrac{1}{\Gamma}$ is the [[reciprocal gamma]] function, and $\gamma$ is the [[Euler-Mascheroni constant]].
  
 
==Proof==
 
==Proof==
  
 
==References==
 
==References==
* {{BookReference|Higher Transcendental Functions Volume I|1953|Harry Bateman|prev=Gamma function written as infinite product|next=}}: §1.1 (3)
+
* {{BookReference|A course of modern analysis|1920|Edmund Taylor Whittaker|edpage=Third edition|author2=George Neville Watson|prev=Euler-Mascheroni constant|next=Gamma function written as infinite product}}: $\S 12 \cdot 11$
 +
* {{BookReference|Higher Transcendental Functions Volume I|1953|Arthur Erdélyi|author2=Wilhelm Magnus|author3=Fritz Oberhettinger|author4=Francesco G. Tricomi|prev=Gamma function written as infinite product|next=Euler-Mascheroni constant}}: §1.1 $(3)$
 +
* {{BookReference|Special Functions|1960|Earl David Rainville|prev=findme|next=findme}}: $8.(1)$
 +
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Gauss' formula for gamma function|next=Euler-Mascheroni constant}}: $6.1.3$
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Latest revision as of 20:56, 3 March 2018

Theorem

The following formula holds for all $z \in \mathbb{C}$: $$\dfrac{1}{\Gamma(z)} = ze^{\gamma z} \displaystyle\prod_{k=1}^{\infty} \left( 1 + \dfrac{z}{k}\right)e^{-\frac{z}{k}},$$ where $\dfrac{1}{\Gamma}$ is the reciprocal gamma function, and $\gamma$ is the Euler-Mascheroni constant.

Proof

References