Difference between revisions of "Reciprocal of Riemann zeta as a sum of Möbius function for Re(z) greater than 1"

From specialfunctionswiki
Jump to: navigation, search
Line 7: Line 7:
  
 
==References==
 
==References==
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Möbius function|next=Identity written as a sum of Möbius functions}}: 24.3.1 B
+
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Möbius function|next=Identity written as a sum of Möbius functions}}: 24.3.1 I.B.
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Revision as of 01:24, 22 June 2016

Theorem

The following formula holds for $\mathrm{Re}(z)>1$: $$\dfrac{1}{\zeta(z)} = \displaystyle\sum_{n=1}^{\infty} \dfrac{\mu(n)}{n^z},$$ where $\zeta$ denotes the Riemann zeta function and $\mu$ is the Möbius function.

Proof

References