Difference between revisions of "Relationship between Bessel J and hypergeometric 0F1"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$J...")
 
Line 2: Line 2:
 
<strong>[[Relationship between Bessel J sub nu and hypergeometric 0F1|Theorem]]:</strong> The following formula holds:
 
<strong>[[Relationship between Bessel J sub nu and hypergeometric 0F1|Theorem]]:</strong> The following formula holds:
 
$$J_{\nu}(z) = \left( \dfrac{z}{2} \right)^{\nu} \dfrac{1}{\Gamma(\nu+1)} {}_0F_1 \left(-;\nu+1;-\dfrac{z^2}{4} \right),$$
 
$$J_{\nu}(z) = \left( \dfrac{z}{2} \right)^{\nu} \dfrac{1}{\Gamma(\nu+1)} {}_0F_1 \left(-;\nu+1;-\dfrac{z^2}{4} \right),$$
where $J_{\nu}$ denotes the [[Bessel J sub nu|Bessel function of the first kind]], $\Gamma$ denotes the [[Gamma]] function and ${}_0F_1$ denotes the [[hypergeometric pFq]].
+
where $J_{\nu}$ denotes the [[Bessel J sub nu|Bessel function of the first kind]], $\Gamma$ denotes the [[gamma]] function and ${}_0F_1$ denotes the [[hypergeometric pFq]].
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █  
 
<strong>Proof:</strong> █  
 
</div>
 
</div>
 
</div>
 
</div>

Revision as of 18:36, 20 May 2015

Theorem: The following formula holds: $$J_{\nu}(z) = \left( \dfrac{z}{2} \right)^{\nu} \dfrac{1}{\Gamma(\nu+1)} {}_0F_1 \left(-;\nu+1;-\dfrac{z^2}{4} \right),$$ where $J_{\nu}$ denotes the Bessel function of the first kind, $\Gamma$ denotes the gamma function and ${}_0F_1$ denotes the hypergeometric pFq.

Proof: